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a b s t r a c t

We propose a novel, highly-efficient approach for the evaluation of bond-orientational order parameters
(BOPs). Our approach exploits the properties of spherical harmonics and Wigner 3j-symbols to reduce
the number of terms in the expressions for BOPs, and employs simultaneous interpolation of normalised
associated Legendre polynomials and trigonometric functions to dramatically reduce the total number
of arithmetic operations. Using realistic test cases, we show how the above, combined with a CPU-
cache-friendly data structure, leads to a 10 to 50-fold performance increase over approaches currently
in use, depending on the size of the interpolation grids and the machine used. As the proposed approach
is an approximation, we demonstrate that the errors it introduces are well-behaved, controllable and
essentially negligible for practical grid sizes. We benchmark our approach against other structure
identification methods (centro-symmetry parameter (CSP), common neighbour analysis (CNA), common
neighbourhood parameter (CNP) and Voronoi analysis), generally regarded asmuch faster than BOPs, and
demonstrate that our formulation is able to outperform them for all studied systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Bond-orientational order parameters (BOPs) were proposed by
Steinhardt et al. in 1981 [1,2] as a generalisation of the two-
dimensional hexatic order parameter [3]. Initially BOPs were ap-
plied to the study of the orientational order in liquids and glasses,
later to become a standard tool in all of solid state physics. Nowa-
days BOPs are chiefly used to differentiate between crystalline
phases, such as sc, bcc, fcc or hcp [4–11].

BOPs have been used to study nucleation and crystal growth
[6,10–17], helping to elucidate the structure of critical nuclei [5]
and nucleation kinetics [18]. They also constitute a standard tool
for the study of melting processes [19–21], where global BOPs are
used as a direct indicator of a phase transition, while local BOPs
serve as measures for the determination of solid and liquid frac-
tions. Studies of undercooling and glassification [10,17,22,23] also
employ BOPs, as do investigations of local icosahedral order in liq-
uid metals [21,24] and in other systems [1,2,25,26].
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Many model systems have been studied with the aid of BOPs:
hard- [6,16,27–29] and soft-spheres [4], Lennard-Jones systems
[5,9,13,14,18,20,30,31] (including binary [32] and polydisperse
[22]), quantum Lennard-Jones solids [19,33] and Gaussian-core
systems [9,17]. Systems described with more complex potentials,
such as Morse [34], modified Buckingham [15] and many-body
potentials (pair functionals) [7,8,35,36] have also been studied
using BOPs.

The BOP technique is commonly used in the investigations
of nanoscale systems, such as atomic clusters [35–37], and gold
nanowires [7,8]. BOPs have also been used in studies of shear-
induced phenomena (e.g. shear-induced ordering [38], shear-
induced crystallisation [39], and shear-induced overaging [40]),
anomalies in liquids [41,42], the freezing of argon in porous
carbon [43], quasicrystals [26], and even plasma [44].

The widespread use of the BOP technique spurred a number
of extensions or generalisations over the last decade. A modifi-
cation, where an additional averaging over nearest neighbours is
performed during the calculation of local BOPs was proposed by
Lechner et al. [9] in order to improve identification of a variety
of crystalline structures. A new formulation, where BOPs are com-
binedwith Voronoi tessellation, was proposed byMickel et al. [45].
This formulation removes the ambiguities introduced by the
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arbitrariness in the choice of a cutoff radius, allowing a better char-
acterisation of the orientational order of disordered systems.

The fact that calculating BOPs involves repeated evaluation of
spherical harmonics (SHs) [46] means that it is a computation-
ally intensive approach. In a benchmark of methods for structural
analysis Stukowski [47] assigns it a computational cost factor of
100, compared with 50 for Voronoi analysis [48,49], 3 for com-
mon neighbour analysis (CNA) [50] and 1 for the centro-symmetry
parameter technique (CSP) [51]. The high computational effort
associated with BOPs narrows the spectrum of their poten-
tial applications, and we are not aware of any examples in
the literature where they would be used for the analysis of
large-scale simulations—these typically employ computationally
cheaper methods, such as energy filtering (e.g. Refs. [52,53]), or
CSP (e.g. Ref. [54]). Being able to use a more involved method that
BOP constitutes for large-scale systems is an enticing prospect. A
discussion of accuracy and limitations inherent in a number of ap-
proaches to structural analysis is given in Ref. [47].

Moreover, the availability of the BOP approach to researchers is
limited. To our knowledge, its implementation is not bundled with
any of the well-known molecular dynamics codes or visualisation
tools, while CSP, CNA or Voronoi analysis are offered by e.g.
LAMMPS [55] or OVITO [56]. The authors are aware of only two
implementations available to the scientific community: one due
to Lechner et al. [9], and another one due to Wang et al. [36].
Both of these implementations are less computationally efficient
compared to competing, simpler approaches.

With the above considerations in mind, we feel a highly-
efficient approach for the evaluation of bond-orientational order
parameters has the potential to widen their spectrum of applica-
tion. In this paper we propose a novel, approximate method for
efficient calculation of BOPs, which can reduce the computational
effort by a factor of up to 50, allowing it to outperformeven the four
approaches generally regarded as faster, i.e. CSP, CNA, CNP (com-
mon neighbourhood parameter) [57] and Voronoi analysis.

The paper is organised as follows. In Section 2 we describe
the BOP approach, highlighting the steps in the calculation that
can be optimised. Section 3 outlines the proposed technique
for evaluating BOPs. Section 4 is devoted to benchmarking the
efficiency and accuracy of the proposed approach. Section 5
contains conclusions.

2. The bond-orientational order parameter (BOP) method

Bond-orientational order parameters [1,2] (BOPs) are used
to characterise short-range order by classifying each atom as
belonging to one of a number of close-packed structures. For every
reference atom i, the classification is performed in four stages,
outlined below.

Stage 1.
The set B(i) of nearest neighbours j of atom i is determined.
Nearest neighbours are defined as atoms that are no further
away from atom i than a prescribed cutoff radius rc. The bond
vectors rij = rj − ri joining atom i with the neighbours j are
calculated as Cartesian components. The number of neighbours
of atom i (cardinality of B(i)) will be denoted by Nb(i).
Stage 2.
Each bond vector rij is projected to the unit sphere, and its
spherical coordinates θ(rij) and φ(rij) are calculated.
Stage 3.
A vector of complex spherical harmonics (SHs) [46] Ym

l (θ(rij),
φ(rij)) is evaluated for every bond vector rij, for a chosen value
of l and m ∈ {−l, . . . , l}.

Table 1
BOP values for typical ideal structures.

Structure Parameter
Q4 Q6 Ŵ4 Ŵ6

sc 0.76376 0.35355 0.15932 0.01316
bcc 0.08202 0.50083 0.15932 0.01316
fcc 0.19094 0.57452 −0.15932 −0.01315
hcp 0.09722 0.48476 0.13410 −0.01244
icos 0 0.66332 0. −0.16975

Stage 4.
A vector of complex quantities Ql,m(i), defined as

Ql,m(i) =
1

Nb(i)


j∈B(i)

Ym
l (θ(rij), φ(rij)) (1)

is constructed. Subsequently so-called second-order (Stein-
hardt) invariants are constructed, according to

Ql(i) =


4π

2l + 1

l
m=−l

Ql,m(i)
21/2

. (2)

Third-order invariants [58] can also be constructed:

Ŵl(i) = Wl(i) ×


l

m=−l

|Ql,m(i)|2
−3/2

, (3)

where

Wl(i)

=


m1,m2,m3

m1+m2+m3=0


l l l

m1 m2 m3


Ql,m1(i) Ql,m2(i) Ql,m3(i). (4)

The quantities
l1 l2 l3
m1 m2 m3


are Wigner 3j-symbols [59].

Invariants for l ≤ 3 vanish for lattices with cubic symmetry,
and in practice bcc, fcc and hcp are differentiated using l = 4 and
l = 6. Each atom i is classified as belonging to a particular structure
by direct comparison of calculated invariants Q4(i), Q6(i), Ŵ4(i)
and Ŵ6(i) with reference values. The values for a number of ideal
structures are given in Table 1.

At non-zero temperatures thermal motions lead to a smearing
of the BOP values, and in practice classification is performed on
a two-dimensional plane of parameter values (e.g. Q4(i) − Q6(i)
or Q6(i) − Ŵ4(i)), on which regions corresponding to particular
packings are defined. For examples see e.g. Refs.[7,15]. However,
no single, consistent approach to the classification itself has been
proposed to date.

3. A highly-efficient approach for evaluating BOPs

The four stages of the calculation of BOPs outlined in Section 2
differ in computational effort. For the identification of neighbours
(stage 1) efficient, linear-scaling algorithms, such as the linked-cell
approach [60,61] are typically used, and calculating bond vectors
rij and their spherical coordinates (stage 2) are very simple opera-
tions. The computational effort of stages 1 and 2 is thus very small.

3.1. Evaluation of spherical harmonics by fast simultaneous interpo-
lation

Themost computationally demanding (about 60% of total effort
for a standard implementation) is stage 3, where a large number of
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