
Computer Physics Communications ( ) –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

An efficient finite-difference scheme for computation of electron
states in free-standing and core–shell quantum wires

V.V. Arsoski a,∗, N.A. Čukarić a,b, M.Ž. Tadić a, F.M. Peeters b

a School of Electrical Engineering, University of Belgrade, P.O. Box 35-54, 11120 Belgrade, Serbia
b Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

a r t i c l e i n f o

Article history:
Received 18 April 2015
Accepted 2 August 2015
Available online xxxx

Keywords:
Quantum wire
Finite difference
Finite element
Discretization
Eigenvalue
Effective-mass

a b s t r a c t

The electron states in axially symmetric quantum wires are computed by means of the effective-
mass Schrödinger equation, which is written in cylindrical coordinates ϕ, ρ, and z. We show that a
direct discretization of the Schrödinger equation by central finite differences leads to a non-symmetric
Hamiltonian matrix. Because diagonalization of such matrices is more complex it is advantageous to
transform it in a symmetric form. This can be done by the Liouville-like transformation proposed by
Rizea et al. (2008), which replaces the wave function ψ(ρ) with the function F(ρ) = ψ(ρ)

√
ρ and

transforms theHamiltonian accordingly. Even though a symmetricHamiltonianmatrix is producedby this
procedure, the computed wave functions are found to be inaccurate near the origin, and the accuracy of
the energy levels is not very high. In order to improve on this, we devised a finite-difference schemewhich
discretizes the Schrödinger equation in the first step, and then applies the Liouville-like transformation to
the difference equation. Such a procedure gives a symmetric Hamiltonianmatrix, resulting in an accuracy
comparable to the one obtainedwith the finite elementmethod. The superior efficiency of the new finite-
difference scheme (FDM) is demonstrated for a few ρ-dependent one-dimensional potentials which are
usually employed to model the electron states in free-standing and core–shell quantum wires. The new
scheme is compared with the other FDM schemes for solving the effective-mass Schrödinger equation,
and is found to deliver energy levels with much smaller numerical error for all the analyzed potentials. It
also gives more accurate results than the scheme of Rizea et al., except for the ground state of an infinite
rectangular potential in freestanding quantum wires. Moreover, the P T symmetry is invoked to explain
similarities and differences between the considered FDM schemes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in nanowire (quantum wire) fabrication tech-
nology have led to an increased interest in the vapor–liquid–solid
(VLS) method [1]. It is a bottom-up process, which has been used
to produce freestanding quantum wires [2], core–shell quantum
wires [3,4], nanowire superlattices [5], branched nanowires [6],
etc. They have beenmade out of various semiconductors, including
III–V compounds [3], silicon [7], germanium [8], and their alloys.
The huge progress in the field has been driven by actual and po-
tential applications of nanowires in electronics and photonics. For
example, transistors [9], photovoltaic devices [10], light-emitting
diodes [11], lithiumbatteries [12], and chemical and biological sen-
sors [13] have all been realized using nanowires.
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In addition to advances in production tools, the models of elec-
tronic structure of quantum wires has substantially progressed
during time, both in increasing complexity and higher precision
[14]. For example, ab initio methods are currently able to predict
experimental results with sub-meV accuracy [14], but are over-
complex to use for large wires. For the latter, however, use of the
effectivemethods, such as the effective-mass andk·p theories,may
be suitable [15–18]. We note that modeling of electronic structure
is essentially important to understand transport and optical prop-
erties of nanostructures and nanodevices. Moreover, the electronic
structure models of quantumwires provide a reliable and an inex-
pensive way to design quantum wire systems with specific prop-
erties.

A convenient model for the electron states in quantum wires
which are wider than about 2 nm is the effective-mass theory.
It has the form of the Schrödinger equation written for the case
of position dependent effective mass, and is able to capture the
essential physics of the electron states. In practice it usually

http://dx.doi.org/10.1016/j.cpc.2015.08.002
0010-4655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2015.08.002
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:vladimir.arsoski@etf.bg.ac.rs
http://dx.doi.org/10.1016/j.cpc.2015.08.002


2 V.V. Arsoski et al. / Computer Physics Communications ( ) –

Fig. 1. The considered potentials in the analyzed cylindrical quantum wires: (a) the infinite rectangular potential well in a free-standing quantum wire, (b) the potential of
a linear harmonic oscillator, (c) the confining potential inside the core of a core–shell quantumwire, and (d) the confining potential inside the shell of a core–shell quantum
wire.

assumes that the confinement potential arises from a band offset
between different semiconductors, yet the eigenproblem is usually
only numerically solvable. For example, the wave function can
be expanded in a basis of analytical functions [19]. But such an
approach is known to produce dense Hamiltonian matrices, and
could have low accuracy of the wave functions around numerical
boundaries [20]. An attractive alternative is the finite-difference
method (FDM) [21], which employs a discretization of the wave
function and its derivatives on a grid [22,23]. Finite difference
approximations are usually of low order [23], therefore the FDM
delivers sparse matrices which could be diagonalized extremely
fast. As a matter of fact, the FDM has been adopted to numerically
solve various equations in physics [24–26]. For example, the
Poisson equation and the Schrödinger equation are solved together
in the Hartree calculation of exciton states by using the same
FDM discretization [27]. The robustness of the FDM has been an
essential criterion for its frequent use to model systems where the
electrons are confined inmore than one dimension, quantumwires
and quantum dots [27], for example.

When applying the FDM to solve the Schrödinger equation, a
grid should be constructedwith special care about the regions close
to the interfaces. It is not a difficult task when quantum wires
have axial symmetry, which allows reducing the eigenproblem
to the computation of matrix elements that depend on only the
ρ coordinate of the cylindrical system. However, the effective-
mass Schrödinger equation contains a term proportional to the
first derivative of the wave function with respect to the radius.
Because of this term the finite-difference approximationmakes the
Hamiltonian matrix nonsymmetric.

In this paper, we study how the FDM is used to solve the
effective-mass Schrödinger equation for axially symmetric po-
tentials that appear in freestanding and core–shell quantum
wires. In the case of freestanding quantum wires, an infinite
rectangular potential and the potential of a 2D linear harmonic
oscillator are analyzed, shown schematically in Figs. 1(a) and (b).
Core–shell quantum wires are considered for: (1) the type-Ic po-
tential [17], where the electron is confined inside the core, and
(2) the type-Is potential [17], which confines the electron in the
shell. Both analyzed potentials in core–shell quantum wires are
assumed to have stepwise variation with ρ, which is displayed
in Figs. 1(c) and (d). A few discretization FDM schemes are con-
structed to solve the eigenproblem. First, the original Schrödinger

equation is discretized by central differences, and it is demon-
strated that the Hamiltonian matrix is asymmetric. Furthermore,
for computing the states of zero orbital momentum two types of
boundary conditions are tested and compared. Second, the
Schrödinger equation is transformed into another equation [28]
by the Liouville-like (LL) transformation, which removes the prob-
lematic term from the Hamiltonian. When the LL-transformed
Schrödinger equation is discretized by the FDM, the Hamiltonian
matrix becomes symmetric. However, the boundary condition at
the inner boundary is such that thewavefunctions are inaccurately
computed close to the origin. The third method is an approach de-
veloped by us, which employs the finite-difference discretization
of the original Schrödinger equation, and subsequently applies the
Liouville-like transformation to the obtained difference equation.
This approach is novel to the best of our knowledge and is able
to solve the problem of insufficient accuracy of the solution of the
LL-transformed Schrödinger equation, and in the same time deliv-
ers a symmetric Hamiltonian matrix. The accuracies of the three
discretization schemes are mutually compared for the analyzed
model potentials, and we compare the results with those from the
finite element method (FEM).

The paper is organized as follows. In Section 2 the discretization
schemes to solve the effective-mass Schrödinger equation for
quantumwires are presented. Section 3 contains the error analysis
on the example of a constant effective mass in the structure.
Section 4 presents the results of our computations. We conclude
in Section 5.

2. The model of the electron states and the FDM schemes

2.1. The model

We compute the electron states by using the effective-mass
Schrödinger equation

H3DΨ3D(r) = EΨ3D(r). (1)

Here, H3D denotes the single-band effective-mass Hamiltonian,

H3D =
1
2
p

1
m∗(r)

p + V (r), (2)

where m∗(r) is the position dependent electron effective mass,
p = −ih̄∇ is the canonical momentum operator, and V (r) is
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