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a b s t r a c t

We propose a replica-exchange method (REM) which does not use pseudo random numbers. For this
purpose, we first give a conditional probability for Gibbs sampling replica-exchange method (GSREM)
based on the heat bath method. In GSREM, replica exchange is performed by conditional probability
based on the weight of states using pseudo random numbers. From the conditional probability, we
propose a new method called deterministic replica-exchange method (DETREM) that produces thermal
equilibrium distribution based on a differential equation instead of using pseudo random numbers. This
method satisfies the detailed balance condition using a conditional probability of Gibbs heat bathmethod
and thus results can reproduce the Boltzmann distribution within the condition of the probability. We
confirmed that the equivalent results were obtained by REM and DETREM with two-dimensional Ising
model. DETREM can avoid problems of choice of seeds in pseudo random numbers for parallel computing
of REM and gives analytic method for REM using a differential equation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The enhancement of sampling during Monte Carlo (MC) and
molecular dynamics (MD) simulations is very important for com-
plex systems. Replica-exchange method (REM) (or parallel tem-
pering) is one of the most popular ways to improve sampling
efficiency [1–4] including biomolecular system in explicit solvent
[5,6] or biomembrane [7,8] (for reviews, see, e.g., Refs. [9,10]). To
realize a thermal equilibrium distribution, REM uses Metropolis
criterion with pseudo random numbers. However, random num-
bers sometimes give inaccurate results of simulations [11]. More-
over, generation of high quality random numbers is often difficult
and does not assure good simulation results [12]. REM and its ex-
tension is suited for parallel computing [13–16]. Most of pseudo
random number generators decrease the scalability in paralleliza-
tion [17]. Hence, the complementary method producing the same
results without pseudo random numbers is meaningful.
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In addition, the analytic approach for temperature selections in
REM has been performed [18,19]. For performance and the con-
dition of REM, several works were also performed. For example,
Nymeyer [20] showed how efficient REM is than conventional sim-
ulations using the number of independent configurations. Abra-
ham and Gready introduced some measurement and compared
the results [21]. Rosta and Hummer [22] evaluated the practical
efficiency of REM simulation for protein folding with a two-state
model. However, the examination of the condition for convergence
of REM is difficult partly because themixing of temperature in REM
is determined by pseudo random numbers with Metropolis crite-
ria. As a result, most of analyses estimated the REM performance
by simulation results.

Recently, Suzuki et al. proposed a method to produce a thermal
equilibrium state without using random numbers for spin models
by a differential equation based on the conditional probability
of Gibbs sampling heat bath method, which is referred to as
chaotic Boltzmann machines [23,24]. The differential equation
controls spin states at each site and the staying time of each spin
state is proportional to the weights of the thermal equilibrium
distribution. They reproduced the results of a conventional MC
method in some spin systems.
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Moreover, Boltzmann machine [25] has its mathematical
framework [26]. The method was analyzed by mean field approxi-
mation [27], algebraic geometry and informative geometry. For ex-
ample, a linear convergence of parameters in Boltzmann machine
was suggested by a learning algorithm of Fisher informationmatri-
ces [28], and a upper boundary for performance was obtained by
algebraic geometry [29]. By introducing the differential equation
for replica-exchange method, the previous results in the fields can
be applied for the REM analysis. This means that analytic approach
for Boltzmann machine will be applied for REM by this extension.
Moreover, this new implementation of REMwill be related to hier-
archical structure of Boltzmann machine, which is similar to deep
Boltzmannmachine [30,31]. Developments in Boltzmannmachine
to accelerate convergence of sampling such as Contrastive Diver-
gence method [32] have been proposed.

We here generalize this Chaotic Boltzmann machine to REM.
We first have to extend the conditional probability for replica
exchange not based on Metropolis criterion but on a Gibbs
sampling heat bath method. The heat bath formalism has already
been given in Ref. [33], we refer to this method as Gibbs sampling
replica-exchange method (GSREM). (A similar approach based on
global balance condition [34] was also developed [35].) We then
introduce a differential equation for replica exchange to modify
GSREM. This method is referred to as the deterministic replica-
exchange method (DETREM). We then tested the effectiveness of
DETREM by comparing the results of simulation of 2-dimensional
Ising model with those by the conventional REM.

The organization of this paper is as follows. In Section 2, the
theory for the new method and conventional REM is presented. In
Section 3, we give the results of DETREM together with REM. The
final section is devoted to conclusions.

2. Methods

We first briefly review the conventional REM. We prepare M
non-interacting replicas at M different temperatures. Let the label
i (=1, . . . ,M) stand for the replica index and labelm (=1, . . . ,M)
for the temperature index. Here, i and m are related by the
permutation functions by
i = i(m) ≡ f (m),

m = m(i) ≡ f −1(i), (1)

where f (m) is a permutation function of m and f −1(i) is the in-
verse. We represent the state of the entire system ofM replicas by
X =


x[1]m(1), . . . , x

[M]
m(M)


, where x[i]m =


q[i], p[i]


m are the set of

coordinates q[i] and momenta p[i] of particles in replica i (at tem-
perature Tm). The probability weight factor for state X is given by a
product of Boltzmann factors:

WREM(X) =
M
i=1

exp[−βm(i)H(q[i], p[i])], (2)

where βm(=1/kBTm) is the inverse temperature and H(q, p) is the
Hamiltonian of the system.We consider exchanging a pair of repli-
cas i and j corresponding to temperatures Tm and Tn, respectively:

X =

. . . , x[i]m , . . . , x[j]n , . . .


→ X ′ =


· · · , x[j]

′

m , . . . , x[i]
′

n , . . .


, (3)

where x[i]
′

n ≡


q[i], p[i]

′

n
, x[j]

′

m ≡


q[j], p[j]

′

m
, and p[j]

′

=


Tm
Tn
p[j],

p[i]
′

=


Tn
Tm

p[i] [4]. The exchange of replicas introduces a new per-
mutation function f ′:
i = f (m)→ j = f ′(m),
j = f (n)→ i = f ′(n). (4)

We remark that this process is equivalent to exchanging a pair of
temperatures Tm and Tn for the corresponding replicas i and j.

Here, the transition probability ω(X → X ′) of Metropolis
criterion is given by

ω(X → X ′) = min

1,

WREM(X ′)
WREM(X)


= min(1, exp(−∆)), (5)

where

∆ = ∆m,n = (βn − βm)(E(q[i])− E(q[j])). (6)

REM is performed by repeating the following two steps:

1. We perform a conventional MD or MC simulation of replica
i (=1, . . . ,M) at temperature Tm (m = 1, . . . ,M) simultane-
ously and independently for short steps.

2. Selected pairs of replicas are exchanged based on the above
Metropolis criterion in Eqs. (5) and (6). A pseudo random
number is used to judge the criterion.

Without loss of generality we can assume T1 < T2 < · · · < TM .
Note that in Step 2 we usually exchange only pairs of replicas cor-
responding to neighboring temperatures, because the acceptance
probability for replica exchange decreases exponentially with the
difference of the two inverse temperatures and potential energy
terms because of Eq. (6). This replica exchange can be written as

X =

· · · , x[i]m , . . . , x[j]m+1, . . .


→ X ′ =


· · · , x[j]

′

m , . . . , x[i]
′

m+1, . . .


, (7)

where in Eq. (5) ∆ is now given by

∆m = (βm+1 − βm)(E(q[i])− E(q[j])). (8)

The REMmethodmakes a randomwalk in temperature space dur-
ing the simulation. The canonical ensemble is reconstructed by the
multiple-histogram reweighting technique, orweightedhistogram
analysis method (WHAM) [36,37].

We next present GSREM [33]. As in the conventional REM, we
usually consider the neighboring temperature exchange in Eq. (7).
The conditional probability ω(x[j

′
]

m , x[i
′
]

m+1 | x
[k≠i(m),j(m+1)]
m(k) ), in which

the new state selects the temperature exchanged state of replicas
i and j with Tm+1 and Tm from the no-exchange state of replicas i
and jwith temperatures Tm and Tm+1, is given by

ω(x[j
′
]

m , x[i
′
]

m+1 | x
[k≠i(m),j(m+1)]
m(k) )

=
W (x[j

′
]

m , x[i
′
]

m+1 | x
[k≠i(m),j(m+1)]
m(k) )

W (x[i]m , x[j]m+1 | x
[k≠i(m),j(m+1)]
m(k) )+W (x[j

′]

m , x[i
′]

m+1 | x
[k≠i(m),j(m+1)]
m(k) )

(9)

=
1

1+
W (x[i]m ,x[j]m+1|x

[k≠i(m),j(m+1)]
m(k) )

W (x[j
′ ]

m ,x[i
′ ]

m+1|x
[k≠i(m),j(m+1)]
m(k) )

. (10)

In GSREM, the above procedure for the conventional REM is
performed, where Step 2 for the GSREM is performed based on
Eq. (A.1). Here, in Step 2, the conditional probability of a
temperature set based on Eq. (A.1) is calculated, and this assigns
weights between 0 and 1 for exchanged states and a no-exchange
state. Finally, after a pseudo randomnumber is generated, the state
corresponding to the random number with the assigned region is
selected. For the Boltzmann distribution, this equation in Eq. (9)
can be rewritten as

ω(x[j
′
]

m , x[i
′
]

m+1 | x
[k≠i(m),j(m+1)]
m(k) ) =

1
1+ exp(∆m)

, (11)

where ∆m is given by Eq. (8). This is the Gibbs sampling replica-
exchange method when an equilibrium state is produced by this
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