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a b s t r a c t

In a preceding paper [Comput. Phys. Commun. 184 (1): 51–59, 2013], we revisited the problem of
calculating Coulomb Green’s function and image potential near a planar diffuse interface within which
the dielectric permittivity of the inhomogeneous medium changes continuously along one Cartesian
direction in a transition layer between two dissimilar dielectric materials. In the present paper, we
consider a cylindrical diffuse interface within which the dielectric permittivity changes continuously
along the radial direction instead. First we propose a specific cylindrical diffuse interface model, termed
the quasi-harmonic diffuse interface model, that can admit analytical solution for the Green’s function
in terms of the modified Bessel functions. Then and more importantly we develop a robust numerical
method for building Green’s functions for any cylindrical diffuse interface models. The main idea of
the numerical method is, after dividing a diffuse interface into multiple sublayers, to approximate the
dielectric permittivity profile in each one of the sublayers by one of the quasi-harmonic functional form
rather than simply by a constant value as one would normally do. Next we describe how to efficiently
compute well-behaved ratios, products, and logarithmic derivatives of the modified Bessel functions so
as to avoid direct evaluations of individual modified Bessel functions in our formulations. Finally we
conduct numerical experiments to show the effectiveness of the quasi-harmonic diffuse interface model
in overcoming the divergence of the image potential, to validate the numerical method in terms of its
accuracy and convergence, and to demonstrate its capability for computing Green’s functions for any
cylindrical diffuse interface models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Problems of calculating electrostatic potential at an arbitrary lo-
cation due to a charge distribution in a dielectricmedium sharing a
common boundary, also called an interface, with another dissimi-
lar dielectric medium occur frequently inmany physical, chemical,
and biological applications. In general, the electrostatic potentialΦ
at location r due to the presence of a point charge Qs located at rs
in a mediumwith a spatially varying dielectric permittivity profile
ε(r) is the solution of the Poisson equation

∇ · ε(r)∇Φ(r, rs) = −4πQsδ(r − rs), (1.1)

where δ(·) is theDirac delta function.When the charge is a unit one
(Qs = 1), the potential Φ(r, rs) defines the electrostatic Coulomb
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Green’s function, denoted as G(r, rs), for such a system with a po-
sition dependent dielectric constant.

In [1], we revisited the problem of calculating Coulomb Green’s
function and image potential near a planar diffuse interface
between two dielectrics in which the dielectric permittivity
profile ε(r) varies and changes continuously along only one
Cartesian direction. In particular, we extended previous work
in planar diffuse interfaces in two ways. Firstly, a new diffuse
interface model, termed the quasi-harmonic interface model, was
constructed, for which analytical calculation of Green’s function
and image potential is easy to achieve. Secondly and also more
importantly, a robust numerical method for building Green’s
functions for general diffuse interface models was developed,
thus opening the way to treat in principle any well-behaving
and physically plausible dielectric permittivity profile for diffuse
interfaces. In the present work, we shall extend our work in [1] to
the case of cylindrical diffuse interfaces within which ε(r) varies
along only the radial direction. Typical areas of application of such
an electrostatic problem include the study of solvation effects on
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molecules at a cylindrical interface separating two fluid phases [2]
and the simulation of ion channels [3,4].

When ε(r) varies along only the radial direction, one can
employ the cylindrical coordinates r = (ρ, φ, z). Without loss
of generality, we assume the point charge Qs is located at rs =

(ρs, φs = 0, zs = 0). Then the CoulombGreen’s functionG(r, rs) =

G(ρ, φ, z; ρs) can be expanded in a Fourier–Bessel form [5] as

G(r, rs)

=


∞

0
dk cos(kz)

∞
n=0


2 − δn0

2π2


cos(nφ)Ĝn(k, ρ, ρs), (1.2)

where δn0 is the Kronecker delta. By substituting this Fourier–
Bessel form into (1.1), one can find that the radial Green’s function
Ĝn(k, ρ, ρs) satisfies the following mono-dimensional differential
equation

1
ρ

d
dρ


ρε(ρ)

d
dρ

Ĝn(k, ρ, ρs)


−


k2 +

n2

ρ2


ε(ρ)Ĝn(k, ρ, ρs)

= −
4π
ρ

δ(ρ − ρs) (1.3)

with the boundary condition that Ĝn(k, ρ, ρs) is finite as ρ → 0
and, on the other hand, Ĝn(k, ρ, ρs) → 0 as ρ → ∞.

If the dielectric permittivity were also independent of ρ, say
ε(ρ) ≡ εs with εs = ε(ρs), then (1.3) would reduce to the
following inhomogeneous modified Bessel equation:

1
ρ

d
dρ


ρ

d
dρ

Ĝn(k, ρ, ρs)


−


k2 +

n2

ρ2


Ĝn(k, ρ, ρs)

= −
4π
ρεs

δ(ρ − ρs), (1.4)

whose solution, denoted by ĜS
n(k, ρ, ρs), can be found in [5] and is

ĜS
n(k, ρ, ρs) =


4π
εs

In(kρs)Kn(kρ), if ρ ≥ ρs,

4π
εs

Kn(kρs)In(kρ), if ρ ≤ ρs.

(1.5)

Here, In(ρ) and Kn(ρ) are the modified Bessel functions of the
first and the second kind which are monotonically increasing and
decreasing with respect to ρ > 0, respectively. Fig. 1 shows some
typical radial Green’s functions ĜS

n(k, ρ, 0.5) of a homogeneous
medium, namely, vacuum (εs = 1). As can be seen, when ρ is fixed,
ĜS
n(k, ρ, ρs) converges to zero as n → ∞ and also as k → ∞.

However, it converges to zero much slower as n → ∞ than as
k → ∞. It should be pointed out that, the unit of ρ is nm, but in the
actual numerical implementation, it is converted to Bohr radius. In
other words, the actual ρ value plugged into In(kρ) and Kn(kρ) is
10ρ/0.52917706.

The corresponding Coulomb Green’s function would be the
Green’s function in the homogeneous medium of dielectric con-
stant εs, namely, G(r, rs) = 1/(εs|r − rs|). So

1
εs|r − rs|

=



1
εs


∞

0
dk cos(kz)

∞
n=0

Kn cos(nφ)In(kρs)Kn(kρ),

if ρ ≥ ρs,

1
εs


∞

0
dk cos(kz)

∞
n=0

Kn cos(nφ)Kn(kρs)In(kρ),

if ρ ≤ ρs,

(1.6)

where

Kn =
4 − 2δn0

π
. (1.7)

For this dielectric environment, the image potential of a point
charge Qs, also called the self-polarization potential in the liter-
ature, represents the effect of the spatially varying permittivity
on the potential at the position of the point charge itself. In other
words, the image potential of the charged particle Qs is calculated
from the screened Coulomb potential Φ(r, rs) by taking r = rs,
excluding the direct Coulomb interaction from Φ(r, rs), and then
dividing by 2, namely,

Φimg(rs) =
1
2


∞

0
dk

∞
n=0


2 − δn0

2π2


Fn(k, ρs), (1.8)

in which the image potential amplitude Fn(k, ρs) is defined as

Fn(k, ρs) = Qs


Ĝn(k, ρs, ρs) − ĜS

n(k, ρs, ρs)

. (1.9)

Accordingly, the image or self-polarization potential energy is

Vimg(r) = QsΦimg(r) =
Q 2
s

2


∞

0
dk

∞
n=0


2 − δn0

2π2


×


Ĝn(k, ρs, ρs) − ĜS

n(k, ρs, ρs)

. (1.10)

In the present work, we shall focus on the calculation of radial
Green’s function Ĝn(k, ρ, ρs). While Green’s function and image
potential near a planar diffuse interface have been investigated
quite extensively (see e.g. [6–11] and references therein), to the
best of the authors’ knowledge, however, Coulomb Green’s func-
tion and image potential near a cylindrical diffuse interface have
not been discussed in the literature. As such, we shall extend
our work in [1] from planar diffuse interfaces to cylindrical ones.
We will present a specific cylindrical diffuse interface model for
which analytical calculation of Green’s function Ĝn(k, ρ, ρs) is easy
to achieve by using the modified Bessel functions. We will also
present a robust numerical method that can be applied to cal-
culate Green’s function Ĝn(k, ρ, ρs) for general cylindrical diffuse
interfacemodels where the dielectric permittivity can change con-
tinuously along the radial direction in an arbitrary way.

The paper is organized as follows. In Section 2 we include
the analytical solution of Green’s function and image potential
for the step-like dielectric interface model. In Section 3, the
quasi-harmonic diffuse interface model is constructed, for which
analytical calculation of Green’s function Ĝn(k, ρ, ρs) is presented.
In Section 4, the robust numerical method for building Green’s
function Ĝn(k, ρ, ρs) for general diffuse interface models is
developed. In Section 5, computation of ratios, products, and
logarithmic derivatives of the modified Bessel function is briefly
discussed. Results of some illustrative numerical experiments are
presented in Section 6, and conclusion is given in Section 7.

To conclude this section, we introduce some shorthand
notations in order to make formulations easier. For n = 0, 1, . . . ,
we let un(ρ) and vn(ρ) be the ratios of the modified Bessel
functions of the first and the second kind, namely,

un(ρ) =
In(ρ)

Kn(ρ)
and vn(ρ) =

Kn(ρ)

In(ρ)
, (1.11)

andIn(ρ) and Kn(ρ) be the logarithmic derivatives of the modified
Bessel functions, namely,

In(ρ) =
I ′n(ρ)

In(ρ)
and Kn(ρ) =

K ′
n(ρ)

Kn(ρ)
. (1.12)
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