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a b s t r a c t

Nowadays most of supercomputers are based on the frame of PC cluster; therefore, the efficiency of
parallel computing is of importance especially with the increasing computing scale. This paper proposes
a high-order implicit predictor–corrector central finite difference (iPCCFD) scheme and demonstrates
its high efficiency in parallel computing. Of special interests are the large scale numerical studies
such as the magnetohydrodynamic (MHD) simulations in the planetary magnetosphere. An iPCCFD
scheme is developed based on fifth-order central finite difference method and fourth-order implicit
predictor–corrector method in combination with elimination-of-the-round-off-errors (ERE) technique.
We examine several numerical studies such as one-dimensional Brio–Wu shock tube problem, two-
dimensional Orszag–Tang vortex system, vortex type K–H instability, kink type K–H instability, field
loop advection, and blast wave. All the simulation results are consistent with many literatures. iPCCFD
can minimize the numerical instabilities and noises along with the additional diffusion terms. All of our
studies present relatively small numerical errors without employing any divergence-free reconstruction.
In particular, we obtain fairly stable results in the two-dimensional Brio–Wu shock tube problem which
well conserves ∇ · B = 0 throughout the simulation. The ERE technique removes the accumulation of
roundoff errors in the uniform or non-disturbed system.We have also shown that iPCCFD is characterized
by the high order of accuracy and the low numerical dissipation in the circularly polarized Alfvén wave
tests. The proposed iPCCFD scheme is a parallel-efficient and high precision numerical scheme for solving
the MHD equations in hyperbolic conservation systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Magnetohydrodynamic (MHD) modeling plays an important
role on space physics and astrophysics simulation studies. For ex-
ample, numerical solar wind models [1–3] based on the MHD the-
ory are currently the only self-consistent mathematical descrip-
tions that are capable of bridging the physical system from many
Astronomical Units (A.U.) near the Sun to well beyond the Earth’s
orbit. Although MHD theory can only approach a partial approx-
imation to actual plasma behavior, it has successfully simulated
many important plasmaproperties in space [4–6]. Numerous space
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physics and astrophysics MHD numerical problems focus on solv-
ing hyperbolic time-dependent partial differential equations. In
the past decades majority of numerical schemes developed with
significant considerations of the computing speed, memory capac-
ity, and accuracy due to the limitations of the computing capacity
and speed: for instance, Lax–Friedrichs scheme [7], Lax–Wendroff
scheme [8], and the follow-on upwind differencing scheme [9–11].
With the evolution of high performance computing the recent de-
velopments of simulation models concentrate on high-order nu-
merical schemes.

However, numerical instabilities of the high-order schemes
still limit the progress of these models, which cannot be sig-
nificantly improved until Weighted Essentially Non-Oscillatory
(WENO) scheme developed by Liu, Osher, and Chan [12]. The
WENO scheme uses fewer grid points to obtain the non-oscillatory,
high resolution, and stable simulation results, such as in the large
amplitude discontinuities and shocks. Other high-order schemes
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have since evolved [13–16] from the WENO schemes [12]. The
high-orderWENOnumerical schemes for theMHD simulations can
be separated into two catalogs: the WENO scheme with the MHD
Riemann solvers [17] and the Central WENO (CWENO) scheme
without the MHD Riemann solvers [18,19]. The WENO scheme re-
quires the evaluation of the MHD eigensystem at each integer grid
point in order to deal with the flux splitting. In comparison, the
CWENO scheme does not demand the computation of eigenvalues
and therefore saves the computing time: nevertheless, the calcu-
lations of the derivative along the x direction need the input from
the information in the y direction in the 2D case [18,19]. Moreover,
an additional divergence-free reconstruction of the magnetic field
B needs to be carried out to retain the divergence of B conserved
in several MHD numerical simulation schemes [17,19].

Although implicit numerical methods are unconditionally sta-
ble, it significantly increases the complexity of the program and
the computing time,meanwhile, it is difficult to enhance the paral-
lel computing efficiency because of inverting large matrices. Since
nowadays most of supercomputers are based on the frame of PC
cluster, the consideration of the efficiency in parallel computing
would becomemore important especiallywith the increasing com-
puting scale. For this tendency, an implicit numerical method with
characteristics of high-efficient parallel computing, high numeri-
cal precision, low dispersion, and low dissipation is strongly de-
sired. In this paper we employ the implicit predictor–corrector
method for time stepping. Although the iterations of the predic-
tor–corrector method result in a large amount of computation, the
increase of the computing efficiency can be expected because no
matrices are required to be solved. In addition, we use the high-
order central finite difference method [20] to solve the spatial
derivative at each integer grid point to incorporate with the im-
plicit time stepping method. All of the computations in the non-
staggered finite difference method are on the integer grid points
such that the structure is simple, easy programming, and simple
to be replaced by a numerical method with different orders de-
pending on our demand of the resolutions. In this paper we use
fifth-order central finite difference method and fourth-order im-
plicit predictor–corrector method. We denote this method as the
high-order implicit predictor–corrector central finite difference
(iPCCFD) scheme. The Elimination-of-the-Roundoff-Error (ERE)
technique [21] is also implemented to minimize the numeri-
cal errors in our approach. This scheme enhances the numeri-
cal precision and minimizes the numerical error (particularly in
the non-disturbed system), thereby approximately conserving ∇ ·

B = 0 without using any divergence-free reconstruction. Al-
though the high-order finite differencemethod, implicit time step-
pingmethod, and ERE technique of iPCCFD scheme highly increase
the amount of computation, the efficiency of parallel computing
is strongly strengthened because no band matrices are required to
be solved. Such an advantage allows us to use the larger supercom-
puter to simulate themore precise and the larger scale simulations.
For instance, we can use the high-resolution 3D global MHD code
to simulate the plasma behaviors in the large scale system, which
requires a large amount of computations such as in the interplan-
etary magnetosphere.

This paper is organized as follows. In Section 2 we introduce
the governing equations of the MHD simulations. The numerical
scheme and ERE technique are detailed in Section 3. In Section 4
wedemonstrate the performance of the high-order iPCCFD scheme
by showing the numerical results of 1D and 2D Brio–Wu shock
tube problems. The simulations of the 2D Orszag–Tang vortex
system, vortex-type and kink-type Kelvin–Helmholtz instabilities,
field loop advection, and blast wave test are also presented in
Section 4. In addition, we quantitatively examine the accuracy of
iPCCFD scheme in the problems of 1D and 3D circularly polarized
Alfvén wave propagation. The numerical dissipation in the 2D run
is also examined. Finally, we discuss and summarize the advantage
of iPCCFD scheme in Section 5.

2. The governing equations

In this paper the MHD equations with diffusions are
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∇ · B = 0. (5)

Here γ is the ratio of specific heats. B, V, ρ, and p are the magnetic
field, the plasma bulk velocity, the plasma mass density, and
the plasma thermal pressure, respectively. The diffusion terms
are added in Eqs. (3) and (4) in order to stabilize the numerical
algorithm, where ηVi and ηTi are the diffusion coefficients. The Eqs.
(1)–(4) can be written as the following equation set in Cartesian
coordinates
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