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a b s t r a c t

In its most widespread, classical formulation, the Nernst–Planck–Poisson system for ion transport in
electrolytes fails to take into account finite ion sizes. As a consequence, it predicts unphysically high
ion concentrations near electrode surfaces. Historical and recent approaches to an appropriate modifi-
cation of the model are able to fix this problem. Several appropriate formulations are compared in this
paper. The resulting equations are reformulated using absolute activities as basic variables describing the
species amounts. This reformulation allows to introduce a straightforward generalisation of the Schar-
fetter–Gummel finite volume discretisation scheme for drift–diffusion equations. It is shown that it is
thermodynamically consistent in the sense that the solution of the corresponding discretised generalised
Poisson–Boltzmann system describing the thermodynamical equilibrium is a stationary state of the dis-
cretised time-dependent generalised Nernst–Planck system. Numerical examples demonstrate the im-
proved physical correctness of the generalised models and the feasibility of the numerical approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The motion of an incompressible mixture of N −1 ionic species
and an electroneutral solvent component N in the self-consistent
electrical field can be described by a system consisting of N − 1
Nernst–Planck equations for themotion (relative to the barycentric
velocity) of the ions, the Poisson equation for the electrostatic field,
and the Navier–Stokes equations for the barycentric velocity of
the mixture with a body force depending on the space charge and
the electric field. Mostly, throughout the paper, the fluid motion
will be regarded in mechanical equilibrium. Electrochemistry and
semiconductor devices are twomain applications of systems of this
type.

The classical drift diffusion approach assumes the species
concentration gradient (with a constant diffusion coefficient), the
advection by barycentric velocity and the advection by the gradient
of the electrostatic potential as driving forces for the motion of
charged species in the self-consistent electric field [1]. It is well
known for a long time that for electrolytes, this approach fails to
reflect the fact that ion sizes are finite. After a first improvement
in [2], starting with [3], various volume exclusion models have
been proposed to fix this problem with varying generality and
success [3–10], see also the reviews of [11,12].
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Nonequilibrium thermodynamics [13] suggests that the chem-
ical potentials of the species have to be regarded as driving forces,
allowing to describe finite ion size effects in the constitutive
relationship between chemical potential and concentration. The
authors of [14] recently confirmed that in order to derive a ther-
modynamically consistent model it is necessary to include the de-
pendency on the pressure into this relationship [4].

In Section 2, the Nernst–Planck–Poisson–Navier–Stokes system
for an ideal incompressible mixture is introduced in a formulation
equivalent to that provided in [14]. Then, constitutive relationships
between chemical potential, pressure and concentration are intro-
duced for four cases: the classical Nernst–Planck equations leading
to the Gouy–Chapman double layer model, the excluded volume
models after Bikerman and Freise [3,4], the ideal incompressible
mixture [14], and – as it is closely related – Fermi–Dirac statistics
for semiconductor problems. It is shown that in thermodynamical
equilibrium and for the case of equal molar masses, the ideal in-
compressible mixture model [14] is equivalent to a multispecies
generalisation of the Bikerman–Freise model.

In Section 3, with the intention to provide a reliable numerical
implementation, the models under investigation are reformulated
in absolute activities as basic variables. This reformulation results
in a rather simple structure of the resulting system of equations.
In particular, cross-coupling of species gradients and degenerating
diffusion coefficients are avoided. This formulation as well allows
for an easy expression of the equations for thermodynamical
equilibrium.

http://dx.doi.org/10.1016/j.cpc.2015.06.004
0010-4655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2015.06.004
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:juergen.fuhrmann@wias-berlin.de
http://dx.doi.org/10.1016/j.cpc.2015.06.004


2 J. Fuhrmann / Computer Physics Communications ( ) –

In Section 4, based on the Scharfetter–Gummel upwind
method [15], a finite volume based multi-dimensional numeri-
cal approach to the approximate solution of the coupled systems
is proposed. It is shown that the discrete solution of the corre-
sponding equilibrium generalised Poisson–Boltzmann problem is
a stationary solution of the discretised generalised Nernst–Planck
system. Numerical examples demonstrate the features of the dif-
ferent models discussed, and the feasibility of the discretisation.

All notations are listed in Appendix A. Appendix B provides
the link of the model described in Section 2 to the formulation
used in [14]. In order to support the proposal to formulate the
equations in activities as primary variables, Appendix C discusses
the consequences of using concentrations as basic unknowns.
Appendix D is devoted to the mathematical proof of the existence
and uniqueness of the inverse activity coefficients.

2. The Nernst–Planck–Poisson–Navier–Stokes-system

In this section, the Nernst–Planck–Poisson–Navier–Stokes sys-
tem for an isothermal, incompressible ideal mixture without ion
size and solvation effects, representing a solution ofN−1 dissolved
species characterised bymolar densities (in the sequel colloquially
referred to as ‘‘concentrations’’) cα and molar chemical potentials
µα in an electroneutral solvent component N is introduced. Differ-
ent variants for constitutive laws for the chemical potentials are
discussed. All notations are found in Appendix A.

For a given distribution of the barycentric velocity v, the
evolution of the molar concentrations cα of charged species is
described by the Nernst–Planck–Poisson system [13,14], see also
Appendix B:

−∇ · ε0εr∇φ = q, (2.1a)

∂tcα + ∇ · (cαv + Nα) = 0 (α = 1 . . .N − 1), (2.1b)

Nα = −
Dα
RT

cα


∇µα −

Mα

MN
∇µN + zαF∇φ


(α = 1 . . .N − 1). (2.1c)

In the effective chemical potentials (also called ‘‘entropy
variables’’ [16])

µ̃α = µα −
Mα

MN
µN (α = 1 . . .N − 1) (2.2)

the Nernst–Planck equation (2.1c) rewrites as

Nα = −
Dα
RT

cα (∇µ̃α + zαF∇φ) (α = 1 . . .N − 1). (2.3)

By their very definition [13], the N diffusion fluxes Jα = MαNα
are defined relative to the barycentric velocity v and sum up to
zero, yielding a condition to define the solvent flux JN . There is
no independent equation for JN of the form (2.1c). The solvent
concentration

cN = c̄ −

N−1
α=1

cα (2.4)

is the difference between the constantmixture concentration c̄ and
the sum of the concentrations of the dissolved species.

The evolution of the velocity field is described by the incom-
pressible Navier–Stokes equations for the barycentric velocity v
and the pressure p under a body force exerted by the motion of
ions:

∂t(ρv)+ ∇ · (ρv ⊗ v)− η∆v + ∇p = −q∇φ (2.5a)

∂tρ + ∇ · (ρv) = 0 (2.5b)

ρ = MN c̄ +

N−1
α=1

(Mα − MN)cα (2.5c)

The density ρ depends on the local composition of the mixture.
In general it is not constant in space and time. Only in the case
of equal molar masses the incompressibility constraint c̄ = const
(B.5) (see also Appendix B.2) coincides with ρ = const. Only this
case would allow to turn (2.5b) into the condition ∇ · v = 0 which
often is seen as synonymous with incompressibility.

From [13], replacing specific quantities by molar ones, one
obtains the Gibbs–Duhem relation

N
α=1

cα∇µα = ∇p. (2.6)

Following [13], system (2.1) is said to be in mechanical equilib-
rium if ∂tv = 0 and∇·v = 0. If, in addition,Nα = 0 forα = 1 . . .N ,
then system (2.1) is said to be in thermodynamical equilibrium.

In the case of mechanical equilibrium, the Navier–Stokes
equations (2.5) reduce to the force balance [13]

∇p = −q∇φ. (2.7)

Taking the divergence on both sides of (2.7) gives

−∆p = ∇ · q∇φ. (2.8)

As it can be assumed that far from an electrode, the pressure p
can be set equal to a fixed reference pressure p◦, (2.8) is a variant
of the force balance (2.7) which leads to a second order partial
differential equation for the pressure p which can be treated by
standard analytical and numerical tools.

In order to close system (2.1), it is necessary to introduce con-
stitutive relationships between the chemical potentials µ1 . . . µN
and the other quantities.

2.1. Chemical potential for classical Nernst–Planck theory

In this theory, it is assumed that themotion of the solvent is not
influenced by themotion of the dissolved species, and the chemical
potential can be set according to [17]. The chemical potential of the
solvent is set toµN = 0, leading to µ̃α = µα for α = 1 . . .N −1. It
is then assumed that the chemical potential follows the ansatz for
an ideal gas:

µ̃GC
α = µα = µ◦

α + RT ln
cα
c̄

(α = 1 . . .N − 1). (2.9)

It corresponds to the Gouy–Chapman double layer model [18] and
is therefore labelled as ‘‘GC’’. This ansatz regards ions as point
charges and misses the fact that the finite size of real ions limits
the maximum possible species concentrations cα . In [14] it has
been criticised for not being consistent to the approach of non-
equilibrium thermodynamics.

2.2. Chemical potential for excluded volume models

The deficiencies of the model (2.9) have been known since a
long time, and the introduction of an excluded volume constraint
is the subject of a significant number of papers, e.g. [3–10]. See also
the reviews of [11,12].

The summary volume fraction of the dissolved species amounts
to

Φ =

N−1
α=1

vαcα, (2.10)

where vα is the partial molar volume necessary to accommodate
1 mol of species α together with the hydration shells [11]. Given
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