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a b s t r a c t

A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with
inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic
model for argon plasma which includes the argon metastable state as independent species, taking into
account electron–atom and atom–atom processes. Results in the case of an hypersonic flow around an
infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher
accuracy of the shock-fitting approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

CFD tools used in the aero-thermodynamic design and analysis
of space vehicles entering planetary atmospheres rely upon the
use of unstructured meshes: NASA’s FUN3D [1,2] and DLR’s
TAU [3,4] codes are two such examples. Unstructured-grid codes
offer greater flexibility than structured ones in tackling complex
geometries allowing automatic adaption of the mesh to the
local flow features. On the other hand, unstructured codes are
less effective and accurate than structured ones especially when
strong shocks occur in hypersonic regime due to the formation of
stagnation point anomalies [5]. For this reason mesh-independent
discretization schemes [6,7] and locally prismatic grids which
mimic structured grids around the shocks [8] have been developed.
In shock-capturing approach, the existence of an inner shock
structure is a purely numerical artefact and the accuracy observed
is reduced [9] within the entire shock-downstream region. In this
paper a more radical approach based on the shock-fitting method
within the unstructured-grid framework has been developed.
Shock-fitting discretizations based on the so-called ‘‘boundary’’
variant have been in use until the mid 90s [10,11] to simulate
supersonic and hypersonic flows: only the strong bow shock
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was fitted and made to coincide with the upstream boundary
of a structured mesh; all other shocks were captured. The
‘‘floating’’ variant of the shock-fitting technique, although more
versatile since it enables embedded shock fitting, is algorithmically
complex, so that only a few three-dimensional calculations have
been reported in the literature [12]. Recent applications of the
‘‘boundary’’ shock-fitting technique in conjunction with high-
order schemes on structured meshes have been reported in [13],
where it is used to perform DNS of compressible turbulence

in chemical and thermal non-equilibrium conditions. In recent
years, some of the authors have developed an unstructured, shock-
fitting algorithm that has been applied to the simulation of steady
inviscid flows of a perfect gas in both two and three spatial
dimensions [14–16]. This unstructured version of the shock-fitting
technique combines features of both the ‘‘boundary’’ and ‘‘floating’’
variants proposed in the structured grid setting: it therefore
enables fitting of both shock and embedded shocks. Moreover,
the geometrical flexibility offered by the use of unstructured
triangular and tetrahedral meshes allows to deal much more
properly with interacting shock [17,18] than it was possible in the
structured-grid context. The code has been extended to include a
chemical non equilibrium description of an argon plasma, inwhich
the continuity equation for the argon metastable state has been
considered. Results show that the shock fitting technique can be
adopted successfully also in these cases. In the following sections
the descriptions of the model and of the numerical method have
been reported together with results.
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2. Governing equations

Chemical non-equilibrium flows are governed by the multi-
species Navier–Stokes equations, and neglecting viscous terms, by
multi-species Euler equations. Given a control volume C , fixed in
space and bounded by the control surface ∂C with inward1 unit
normal n, the integral form of the governing conservation laws
of mass, energy and linear momentum for an arbitrary mixture
of thermally perfect gases in chemical non-equilibrium has the
following form:

∂

∂t


C
ρsdV −


∂C

ρsu · n dS =


C
SsdV , (1a)

∂

∂t


C
ρEdV −


∂C

ρHu · n dS = 0, (1b)

∂

∂t


C
ρudV −


∂C

ρuu · n dS −


∂C

pn dS = 0. (1c)

Introducing the vector of conservative variables U = (ρs, ρE, ρu)t

the Euler system (1) can be written in the following compact form:
C

∂U
∂t

dV =


∂C

F · n dS +


C
S dV (2)

where F and S are respectively the inviscid flux and the chemical
source terms defined as:

F =


ρsu
ρuH

ρuu + pId×d


, S =

Ss
0
0


. (3)

In (3) Id×d is the identitymatrix of order d, where d is the geometri-
cal dimension of the problem, i.e. d = 2 for two-dimensional (2D)
flows and d = 3 for three-dimensional (3D) flows. Eq. (2), can be
rewritten in a differential form as follows:

∂U
∂t

+ ∇ · F = S (4)

whereas the corresponding quasi-linear form reads:

∂U
∂t

+ A · ∇U = S (5)

where the Jacobian matrix of the inviscid fluxes is defined as A =

∂F/∂U.
The expressions of the fluxes F = Fiei and of the corresponding

Jacobian matrices A = Aiei are reported in Appendix A, see Eqs.
(A.1) and (A.2).

At high temperature, the effects of intermolecular force on
particles motion can be neglected, so that it is possible to consider
a mixture of thermally perfect gases [19], and the equation of state
is given by Dalton’s law:

p =

Ns
s=1

ρsRsT = ρRT . (6)

The total internal energy per unit mass E = e +
u·u
2 is the sum of

the kinetic energy and the mixture internal energy:

e =

Ns
s=1

αs es(T ). (7)

For high temperature flows it is not possible to neglect the
electronic, vibrational and rotational energy excitation, which

1 The use of inward normals is a convention in use since the early developments
of this class of schemes.

implies that it is not any longer possible to assume that the gas
is calorically perfect. The internal energy is given by the sum of a
translational contribution ets , a contribution due to the excitation
of the internal energy modes eis and the formation enthalpy hf

s
[20–23]:

es = ets + eis + hf
s . (8)

The translational energy is assumed to be completely excited, it
reads:

ets(T ) =
3
2
RsT , (9)

while the internal energy can be sub-divided (as a first approxi-
mation [22]) into three contributions: rotational (r), electronic (e)
and vibrational (v):

eis = ers + ees + ev
s . (10)

Concerning the atomic species, the internal energy is only due
to the electronic energy while electrons do not have an internal
structure. We obtain the following expressions for the internal
energy per unit mass:

es =
3
2
RsT + ees + hf

s (11)

being zero the formation energy of electrons. In a state-to-state
model, each excited internal state is convected as a single chemical
species, which implies that there is no internal contribution to
the energy of each individual chemical species [24,25]. For the
kth excited level of the sth chemical species, the internal energy
is given only by the sum of the roto-translational and formation
energies:

eis =
3
2
RsT + hf

s,k. (12)

The internal energy of a given species is given by the sum of the
level energy weighted by the internal distribution.

Chemical source terms Ss in Eq. (1) are given by the well known
mass action law [20]:

Ss = Ms

Nr
r=1


ν ′′

sr − ν ′

sr


ξ̇r (13)

where the velocity for the rth chemical reaction is:

ξ̇r = kfr
Ns
i=1


ρi

Mi

ν′
ir

− kbr
Ns
i=1


ρi

Mi

ν′′
ir

. (14)

The reaction rates kfr and kbr in Eq. (14) depend upon the selected
collisional model [22].

2.1. Kinetic model for an ionized argon mixture

In this work a quasi-neutral argon plasma has been considered
in which heavy species and electrons are in thermal equilibrium
(Te = T ). A non-equilibrium plasma would require a detailed
collisional–radiative model, considering all possible transitions
involving the atomic electronic excited levels [26] and electron
energy distribution function (EEDF) may follow a non-Maxwellian
distribution [27–29]. This approach could be the subject of future
investigations. In this work we considered a reduced number of
electronic excited levels, taking into account only three chemical
species: the neutral atoms Ar, the positive ions Ar+ and the
electrons e−. Following [30], we consider a two-levels system for
the neutral atom, with the ground state Ar0 and the 4s metastable
state Ar∗ and only the ground state for the positive ion Ar+. The
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