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a b s t r a c t

Simulated tempering (ST) has attracted a great deal of attention in the last years, due to its capability
to allow systems with complex dynamics to escape from regions separated by large entropic barriers.
However its performance is strongly dependent on basic ingredients, such as the choice of the set
of temperatures and their associated weights. Since the weight evaluations are not trivial tasks, an
alternative approximated approach was proposed by Park and Pande (2007) to circumvent this difficulty.
Here we present a detailed study about this procedure by comparing its performance with exact (free-
energy) weights and othermethods, its dependence on the total replica number R and on the temperature
set. The ideas above are analyzed in four distinct lattice models presenting strong first-order phase
transitions, hence constituting ideal examples in which the performance of algorithm is fundamental.
In all cases, our results reveal that approximated weights work properly in the regime of larger R’s. On
the other hand, for sufficiently small R its performance is reduced and the systems do not cross properly
the free-energy barriers. Finally, for estimating reliable temperature sets, we consider a simple protocol
proposed by Valentim et al. (2014).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Although Monte Carlo method has become probably the most
common tool for studying phase transitions and critical phenom-
ena, in practice its usage is not so simple, whenever standard
algorithms (e.g. Metropolis) are used. Despite the simplicity and
generality, they lead to difficulties close to the emergence of phase
transitions. For instance, alternative procedures are typically re-
quired, specially in the case of systems with microscopic configu-
rations separated by valleys and hills in the free-energy landscape
[1–4]. Cluster algorithms [5,6], multicanonical [7], Wang–Landau
[8] and tempering methods are some examples of proposals
to overcome these difficulties. In particular, parallel tempering
(PT) [9] and simulated tempering (ST) [10] enhanced sampling
methods have drawn attention due to their generality and simplic-
ity when compared with the previous examples. Their basic idea
consists of using configurations from high temperatures for sys-
tems at low temperatures, allowing in principle the dynamics to
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escape frommetastable states and providing an appropriate visit of
the configuration space. In particular, distinct aspects of tempering
methods have been explored in the last years, aiming at better un-
derstanding of efficiency and pertinence. For instance, the role of
temperature sets for the PT case was investigated in Refs. [11–14],
whilst the importance of non-adjacent exchanges was taken into
account in Refs. [14–18]. In addition the efficiency and comparison
between tempering methods were considered in Refs. [19–21].

Focusing our attention in the ST we face one of its main diffi-
culties, namely the evaluation of the free-energyweights, required
for a uniform sampling to all temperatures. Despite the develop-
ment of alternative techniques, their applicability for more com-
plex systems still poses a hardship. In some cases [19,22], the
accumulation of histograms (of a given quantity) and previous
simulations are necessary to calculate (or to estimate) the input
parameters that guarantee a sufficient number of visits to all tem-
peratures. In such cases, theweights are set arbitrarily but a knowl-
edge of the partition function Zi at each temperature is required
and a flattening histogram based on a random walk in the param-
eter (temperature or energy) space is used to obtain a satisfactory
estimation of Zi. In Refs. [23,24], the partition function is exactly
valued through numerical simulations, taking into account its re-
lationship with the largest eigenvalue λ(0) of the transfer matrix
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T . Although the evaluation of λ(0) is possible for lattice-gas sys-
tems, its extension formore complex cases (e.g. off-lattice systems)
is not straightforward. In contrast to previous ‘‘exact’’ approaches,
Park and Pande [25] proposed an approximated tool of estimating
weights, based on the average system energy. Since the mean en-
ergy is easily obtained for any system (including lattice and off-
lattice models), it constitutes a considerable simplification over
the free-energy case. Nevertheless, there are some fundamental
points that need to be understood in order to make it a promptly
useful method. The first one is how this procedure compares it-
self with using free-energy weights? The second one is under
what conditions does it provide equivalent results to those ob-
tained from free-energy weights? An additional point is if it is
possible to obtain proper temperature set that yields precise re-
sults under lower computational cost. To answer the aforemen-
tioned points, we have analyzed, under the ST with approximated
weights, four distinct lattice models, namely, Blume–Capel (BC)
and Blume–Emery–Griffiths (BEG) [26], Bell–Lavis (BL) [27,28] and
associating lattice gas (ALG) water models [29,30]. The former two
are interesting tests, due to the existence of very precise results
available from cluster algorithms [31], Wang–Landau [32], PT and
ST with free-energy weights [14,18,20,33]. Therefore, they consti-
tute relevant benchmarks for our purposes. The BL andALG are also
important examples, taking into account theirmore complexphase
diagrams, including liquid phases with distinct structures, regions
of unusual behaviors (density and diffusion anomaly lines) and also
dynamic transitions [28,34]. In the case of ALG, an extra advantage
arises, due to the existence of two phase coexisting lines, between
gas and liquid phases. Hence, the ALG works as a double checking
of reliability of our proposals. For instance, we focus on the regime
of low temperatures, in which strong first-order phase transitions
separate coexisting phases. Recently a general approach for discon-
tinuous transitions has been proposed [35,36], in which thermo-
dynamic quantities are described by a general function, allowing
to achieve all relevant information by studying rather small sys-
tem sizes for some control parameters. Thus, its combination with
a proper usage of ST can provide us a powerful approach to deal
with discontinuous transitionswith rather lowcomputational cost.

Henceforth, the analysis of all cases will show that the approx-
imated weights work properly (and hence lead to correct results)
in the regime of large replica numbers R for an appropriate choice
of temperature sets [33]. On the other hand, for sufficiently small R
its performance is strongly reduced and the system does not visit
properly the distinct coexisting regions. Finally we extend for the
approximatedweights, a simple protocol for obtaining proper tem-
perature sets initially proposed for the free-energy weights [33].

2. Simulated tempering and approximated weights

The basic idea of the ST concerns with the fact that the system
temperature T can assume different values between the extreme
values T1 and TR, where R is the replica number. TheMC simulation
is defined as follows: In the first part, starting at a given tempera-
ture Ti within the setTR ≡ {T1, . . . , TR} (in all caseswe started from
TR), a given site of the lattice is randomly chosen and its variable
is changed (among all possibilities) according to the Metropolis
prescription min{1, exp(βi∆H)}, where ∆H(σ ) denotes the en-
ergy difference between the ‘‘new’’ and ‘‘old’’ configurations and
βi = 1/kBTi. After repeating above dynamics a proper number of
realizations (here L2 random choices are considered) in the second
part the temperature exchange (Ti → Tj) occurswith the following
probability

pi→j = min{1, exp[(βi − βj)H(σ ) + (gj − gi)]}, (1)

where gi is the weight associated with the temperature Ti and
H(σ ) is the system Hamiltonian. For a uniform sampling, the

weights should be proportional to the free-energy fi given by gi =

βi fi [25]. Since the evaluation of f is not an easy task, alternative
calculations of weights have been proposed [19,22–24]. The sim-
plest proposal [25] estimates the g ’s according to the following ap-
proximated formula

gj − gi ≈ (βj − βi)(Uj + Ui)/2, (2)

with Ui = ⟨Hi⟩ (i = 1, 2, . . . , R) denoting the average system en-
ergy at Ti. Thus, from Eq. (2) theweights are estimated from simple
and direct standard numerical simulations. Here we give a further
step by analyzing them by inspecting two crucial points: their de-
pendence on the replica number R and on the set of temperatures
TR. In order to scrutinize them,we comparenumerical results at the
phase coexistence points for distinct R’s, with temperature sched-
ules estimated as proposed in Ref. [33] and described as follows:
starting from a fixed T1 we choose the next R − 1 temperatures
T2 < T3 < · · · < TR in such a way that the resulting exchange
frequencies fi+1,i between any two successive temperatures Ti and
Ti+1 are all equal to some value specified fi+1,i = f . We define fi+1,i
as the ratio of the number of exchanges between Ti and Ti+1 to the
total Monte Carlo steps NMC . Note that from this recipe the highest
temperature TR becomes automatically obtained. The efficiency of
such achieved set TR is verified by means of standard tests, where
in the case of first-order transitions, the tunneling between the co-
existing phases and convergence to the steady state starting from a
non-typical initial configuration constitute proper efficiency mea-
sures. More specifically, the existence of full trapping in a given
phase or even temperature changes that do not allow the system to
visit properly the coexisting phases will imply in thermodynamic
averages marked by no changes or abrupt variations (see Fig. 2 for
f = 0.37 and f = 0.02, respectively). Such points can be under-
stood by recalling the ideas from Refs. [35,36], when the system
close to the phase coexistence have typical thermodynamic quan-
tities, like energy and order parameter, well described by the fol-
lowing general expression

W (y)

≈


b1 +

N
n=2

bn exp[−any]


1 +

N
n=2

cn exp[−any]


, (3)

where for N coexisting phases, y denotes the ‘‘distance’’ to the co-
existence point ξ ∗ given by y = ξ − ξ ∗. The coefficients cn’s and
bn’s are related to derivatives of the free energies fn of each phase
n with respect to parameter ξ reading ∂ fn/∂ξ [36]. In the case of
two phase coexistence (N = 2) Eq. (3) acquires the following way
W (y) = (b1 + b2 exp[−a2y])/(1 + c2 exp[−a2y]) and hence only
four parameters are necessary to determine the whole function. In
otherwords, according to Eq. (3), numerical simulations (of a given
system) for known L and control parameter sets ξ = ξ0 (like chem-
ical potential and temperature) will provide a well defined value
for thermodynamic quantitiesW ∗

0 = W (L, y0), where y0 = ξ0−ξ ∗.
Note that at the phase coexistence point y = 0, the quantity W
reads

W0 =

b1 +

N
n=2

bn

1 +

N
n=2

cn

(4)

for all L’s. Hence, different curves of W should cross at the coexis-
tence point. However, as W0 and W ∗

0 are verified only for dynam-
ics that visit properly the distinct phases (e.g. one flip algorithms
lead to strong hysteresis at low T ’s and results do not obey Eq. (3)).
In the case of tempering methods, the achievement of results not
following Eq. (3) indicates that TR is not proper. Typically, low Ti’s
(including the extreme TR) provide high temperature exchanges,
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