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a b s t r a c t

The implementation of a geometric algorithm to identify cavities in particle systems in an open-source
python program is presented. The algorithm makes use of the Delaunay space tessellation. The present
python software is based on platform-independent tools, leading to a portable program. Its successful
execution provides information concerning the accessible volume fraction of the system, the size and
shape of the cavities and the group of atoms forming each of them. The program can be easily incorpo-
rated into the LAMMPS software. An advantage of the present algorithm is that no a priori assumption
on the cavity shape has to be made. As an example, the cavity size and shape distributions in a polyethy-
lene melt system are presented for three spherical probe particles. This paper serves also as an introduc-
tory manual to the script. It summarizes the algorithm, its implementation, the required user-defined
parameters as well as the format of the input and output files. Additionally, we demonstrate possible
applications of our approach and compare its capability with the ones of well documented cavity size
estimators.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The accessible volume fraction and cavity size distribution in
soft matter systems determine many of their static and dynamic
properties [1–8]. Among others, the size and shape of cavities in
polymers have a strong impact on the permeability and solubil-
ity of small molecules [1,2]. Attempts to describe the liquid–glass
transition in amorphous materials by modifications of the free
volume have been made [3]. One of the dominant mechanisms
leading to failure in amorphous polymers under deformation is
crazing [4–6], i.e. the formation of large cavities which greatly re-
duce the cohesive forces in these materials. It belongs to the com-
mon knowledge that the diffusion of small molecules in polymer
matrices canbedescribedby a series of hopping processes between
neighboring cavities [7,8].

Several algorithms to identify cavities in molecular simulations
have been described in the literature [7,9–13]. They can be di-
vided into two main categories. The first one makes use of geo-
metric algorithms to describe the molecular system in terms of an
equivalent hard-sphere one and neglects all energetic interactions
among the particles. Then, the analysis relies either on a Delau-
nay space tessellation or a space discretization using for instance
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cubic grids [14,15]. The second category employs the energetic in-
teractions between a probe particle and the atoms of the system
to detect the cavities [16,17]. The majority of these techniques as-
sumes a spherical cavity shape [10]. An advantage of the first set
of methods is that no assumption on the shape of the cavities is
made.

In this paper, we reconsider a geometric algorithm to de-
termine the cavity size distribution and the accessible volume
fraction in particle systems. The proposed cavity identification
procedure employs spherical probes. Non-spherical cavity shapes
are not determined directly, i.e. by employing non-spherical
probes, but indirectly by using spherical probe particles and calcu-
lating several cavity shape parameters, such as the asphericity and
acylindricity elements. Its implementation into a portable open-
source python script which can be integrated into LAMMPS [18]
is presented. The source code is distributed at the Pizza.py toolkit
website (http://pizza.sandia.gov/). A direct adaptation of the cav-
ity identification code to otherMolecular Dynamics orMonte Carlo
software programs is feasible. It requires only a simple modifi-
cation of the parsing module of the input files. An alternative
approach would be the employment of utilities, such as the built-
in interfaces of LAMMPS or the use of Topotools [19], to con-
vert between different file formats. The influence of the size of
the probe particle on the estimated properties is discussed for an
unentangled monodisperse polyethylene melt.
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Table 1
List of all user-defined parameters in the python cavity identification application.

Parameter Description

NumConfs Integer variable defining how many configurations from the configuration file will be processed, starting from the first
maxMC Integer variable determining the number of insertions in the Monte Carlo accessible volume calculation for each Delaunay

tetrahedron
ClusteringRadius Real variable specifying the probe radius
UnoccupiedVolumeInfo Integer variable controlling whether the unoccupied volume of each tetrahedron will be stored in an external file (value of 0) or not

(any other value)
AtomsPerCavityInfo Integer variable controlling whether the volume and the atoms forming each cavity will be stored in an external file (value of 0) or

not (any other value)

2. Algorithm

The implemented algorithm maps an interacting particle sys-
tem in an equivalent hard-sphere one. The subsequent geometric
analysis is based on Delaunay tessellation [14,15]. Once the tes-
sellation is carried out, the accessible volume in each Delaunay
tetrahedron is determined. Then the cavities are formed by clus-
tering neighboring Delaunay elements fulfilling a first-passage cri-
terion [11,20]. The Delaunay approach has remarkable analogies
with the tetrahedron method developed for the k-space integra-
tion in band structure calculations of crystalline solids [21]; for
more details see [22].

The suggested algorithm starts with the assignment of an
atomic mass and radius to each particle in the system. The atomic
radius is given by the sum of the atomic van derWaals radius, rvdW ,
and the radius of the chosen spherical probe particle, rP . The rvdW
element can be related to the Lennard-Jones σ parameter, i.e. the
finite distance where the interatomic potential for dispersion in-
teractions becomes zero; we have rvdW = 2−5/6σ [23]. The rP is
user-defined by inserting the value of the ‘‘ClusteringRadius’’ pa-
rameter. A complete listing of all user-specified parameters is given
in Table 1. Subsequently, the configuration, i.e. the coordinates of
the particles of the system at a certain time, is transferred into the
simulation box with center at (0, 0, 0). The box is assumed to be
three-dimensional and periodic in all spatial directions while its
shape is expected to be rectangular, but not necessarily cubic.

The Delaunay tessellation is performed by employing the qhull
library [24] (http://www.qhull.org). This library is well-known in
the field of computational geometry and is adopted as a standard
tool for Delaunay analysis (more than 2000 citations). Since the
current implementation of qhull treats only non-periodic systems,
the simulation box is augmented with its 26 first neighboring
images prior to the tessellation. The periodicity is restored by
suitably processing the obtained tetrahedra. At first, the tetrahedra
with all four atoms outside the simulation box are discarded.
Then, the elements lying on the boundaries of the simulation box
are considered. Every Delaunay element with three atoms lying
outside the simulation box is the periodic image of an element
having only one atom outside the simulation box. Therefore, the
former elements are also discarded while the atoms of the latter
elements located outside the simulation box are replaced by their
periodic images which reside inside the box. Similarly, for each
Delaunay element with two atoms outside the simulation box, its
periodic image is found and deleted. Moreover, the two atoms
which are outside the box are replaced by their periodic images,
located inside the box.

Before proceedingwith the calculation of the accessible volume
per Delaunay element, the simulation box is divided into small
cubic sub-regions. The length of each sub-region is equal to the
maximum atomic radius in the system. Then a neighbor list
for each sub-region is constructed. For each Delaunay element,
the neighboring atoms, whose spheres overlap with the given
tetrahedron, are determined by a sphere–triangle intersection
test [25].

The definitions of the unoccupied and accessible volume of a
Delaunay element follow the ones proposed by Arizzi et al. [11].
The unoccupied volume of a Delaunay element is the volume
of a tetrahedron which is not occupied by any atomic sphere.
The unoccupied volume fraction is defined as the ratio of the
unoccupied volume to the overall volume of theDelaunay element.
In a similar fashion, the accessible volume of a spherical probe
particle with radius rP is defined as the volume of the Delaunay
element which is not occupied by any rP augmented atomic
sphere. The accessible volume is estimated by employing a Monte
Carlo integration scheme. The irregular shape of the accessible
volume elements precludes a direct analytical integration. In the
Monte Carlo integration scheme employed in the present report, a
geometric point lying inside the considered Delaunay tetrahedron
is randomly chosen. Then, it is tested whether the point is located
within any of the spheres of the four atoms forming the Delaunay
element or any atomic sphere in the immediate vicinity of the
tetrahedron. If there is no overlap, the insertion is successful.
The number of attempted point insertions is controlled by the
‘‘maxMC’’ parameter. The accessible volume fraction is equal to the
ratio of the successful insertions to the attempted ones.

The next step is the clustering of tetrahedra to larger entities
where each one corresponds to a cavity. The clustering is
performed by employing a ‘‘first-passage’’ criterion [11,26]. The
physical interpretation is as follows: If the common surface
between two neighboring tetrahedra formed by three atoms is
large enough so that a particle residing in the interior of the first
tetrahedron can pass through the surface migrating to the interior
of the second tetrahedron, then these two tetrahedra should be
considered as parts of the same cavity and clustered together. The
present implementation discriminates four different cases. In the
first one, the atomic sphere of one particle is large enough that it
encloses the other two particles. Thus, the surface is completely
blocked and the two tetrahedra are not connected. In the opposite
limit, the atomic spheres of all three particles are so small that
there is no overlap among them. Hence, the surface is open and
the two tetrahedra are directly connected. Note that the probe size
is already taken into account into the atomic radius. Two more
cases have to be examined: (i) there are only two intersections
among the three spheres, i.e. the atomic sphere of one particle
intersects with the spheres of the two other particles and (ii) there
is an overlap between every pair of atomic spheres. In case (i),
we first define the joining vector between the two centers of the
non-overlapping atomic spheres. Then we test whether all points
of the joining vector, which do not belong to any of the non-
intersecting spheres, are enclosed by the third sphere. If they are
not lying inside the third sphere, the tetrahedra are connected and
considered to belong to the same cavity. In case (ii), the standard
trilateration procedure is employed. If the point of intersection
of any two atomic spheres is located inside the third sphere, the
surface is blocked and the tetrahedra are disconnected; otherwise
they are assigned to the same cavity.

A number of quantities for each cavity can be calculated.
One is the cavity volume, vC , by summing the individually
accessible volumes of all tetrahedra belonging to the given cavity:
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