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a b s t r a c t

Solving the close-coupling equations for electron–atom scattering in momentum space involves the
solution of coupled integral equations,which contain principal value singularities. These can be accurately
treated numerically using an on-shell subtraction technique. Here we show how the singularities may be
taken into account analytically, leading to an alternative approach to the solution of the integral equations.
The robustness of the method is demonstrated by considering the S-wave model of e-H scattering across
eight orders of magnitude of incident energies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the last two decades there has been considerable progress
in the field of atomic scattering theory. Electron, positron and pho-
ton scattering processes, including ionisation, on simple atoms are
readily calculated using several non-perturbative numerical ap-
proaches such as exterior complex scaling [1,2], R-matrix with
pseudostates [3,4], time-dependent close-coupling [5], integro-
differential close-coupling [6] and convergent close-coupling
(CCC) [7].

The CCC method relies on the numerical formalism suggested
by McCarthy and Stelbovics [8] for solving the coupled equations
in momentum space, with a slight modification by Bray and Stel-
bovics [9] to allow the usage of only real arithmetic. Some of the
numerical issues that require solving are the principal value singu-
larities, which occur at a different energy in each open channel. The
method of solution used up to nowwas based on the on-shell sub-
traction technique, of which there are several variants in the liter-
ature, see for example Walters [10] and Heller and Reinhardt [11],
which generally works very well. By using a near-symmetric treat-
ment on either side of the singularity with a Gaussian quadrature
themagnitude of the subtractions can beminimised. Nevertheless,
the on-shell point cannot be a part of the integration.

The subtraction procedure can be somewhat problematic near
thresholds for excitation of open states, due to the vicinity of the
singularity to zero. Also, in cases where the system is particu-
larly ill-conditioned, as happenswhen large expansions are used in
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multi-centre problems, the addition and subtraction of large parts
of the integrand on either side of the singularity is prone to preci-
sion loss. The near n ≤ 3 positronium formation threshold study
of positron–hydrogen scattering is one such example [12]. To push
this to higher n requires a more robust numerical method.

Here we give an alternative approach to solving the CCC equa-
tions that eliminates the singularities. It is shown that the inte-
grals can be done analytically and that the subsequent equations
take the same form as the previous ones, but without singulari-
ties. To demonstrate the utility and robustness of the method we
consider the Temkin–Poet S-wave model of e-H scattering [13,14].
In this model only states of zero orbital angular momenta are re-
tained. In doing so the problem is stripped from the multidimen-
sional complexity of the full problem, while retaining the essential
issues associated with solving the coupled-equations. This model
has been extensively used to develop and study a range of issues
associated with the development of general numerical approaches
to electron–atom scattering [15–19].

2. Theory

The convergent close coupling method (CCC) was developed by
Bray and Stelbovics [9] in order to solve for scattering amplitudes
in e-H collisions. It solves directly for the transition amplitude via

⟨kf φf |TS |φiki⟩ = ⟨kf φf |VS |φiki⟩

+

N
n=1


d3k

⟨kf φf |VS |φnk⟩⟨kφn|TS |φiki⟩

E + i0 − ϵn −
1
2k

2
, (1)

where k and φ are the projectile momentum and target state, re-
spectively. The total energy (Hartree) of the system is E = ϵi +
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k2i /2 = ϵf + k2f /2, and the total spin is S = 0, 1. The n = 1, . . . ,N
target states φn are all square-integrable, and may be obtained
by diagonalising the target Hamiltonian in a Laguerre basis [9],
or by solving the target Schrödinger equation in a box-basis with
φn(r) = 0 for r ≥ R0, where R0 is a free parameter [20]. The inter-
action potentials VS are given in Ref. [9].

Eq. (1) is solved using real arithmetic by transformation to the
KS matrix, and upon partialwave expansion is solved separately for
each partial wave of total orbital angular momentum

⟨kf φf |KS |φiki⟩ = ⟨kf φf |VS |φiki⟩

+

N
n=1

P


∞

0
dk

⟨kf φf |VS |φnk⟩⟨kφn|KS |φiki⟩
E − ϵn −

1
2k

2
. (2)

Here, for simplicity, we neglected any orbital angular momenta
notation since in the S-wave model all are set to zero.

Following McCarthy and Stelbovics [8] the principal value
singularity in Eq. (2) may be treated by a subtraction technique or
equivalently symmetric positioning of quadrature points on either
side of the singularity. To date the CCCmethod has utilised such an
approach.

We now suggest an analytical approach to the integral for open,
kn =

√
2(E − ϵn), and closed, kn =

√
2(ϵn − E), channels utilising

the relation [21]

Gn(r ′, r ′′) = P
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∞

0
dk
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π
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sin (knr<) cos (knr>) , if open,

π

2kn


exp (−knr<) − exp (knr<)


exp (−knr>) , if closed,

(3)

where r< ≡ min(r ′, r ′′) and r> ≡ max(r ′, r ′′).
To implement this, we incorporate (3) in (2) as follows,
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If we let k′′
→ k and define
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then the original K -matrix is recovered simply from

⟨kf φf |KS |φiki⟩ = ⟨kf φf |VS |φiki⟩

+
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0
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S |φnk⟩⟨kφn|KS |φiki⟩, (6)

where now there is no singularity as there was in Eq. (2).
Note that the above derivation used the relation ⟨k′

|k⟩ = δ(k′
−

k). However, this is difficult to implement numerically, and so in-
stead we form a box-basis for the projectile which satisfies ⟨kn′ |kn⟩

= δn′n. This ensures all integrals exist, and the integral in Eq. (6) be-
comes a simple sum over as many kn as required for convergence.
Note that now kn may be included in the integrand of Eq. (6).

The integrals in Eq. (5) are essentially separable, due to the an-
alytic nature of Gn, and so little extra computation is required. In
the present case of the S-wave model studied, the evaluation of
Eq. (5) is of a commensurate time as the original V -matrix ele-
ments. However, the computational time for Eq. (5) is indepen-
dent of the complexity of the full problem. For general problems
the extra overheadwill be insignificant, particularly for two-centre
problems such as positron–hydrogen scattering [22]. Convergence
considerations with increasing N are the same as for Eq. (2). The
primary difference now is that we have to choose a box size Rk for
the projectile wavefunctions, and choose how many k quadrature
points (Nk) we want to take. These can be taken to be exactly the
same in every channel, open or closed, whichwas not possible pre-
viously. Taking Rk to be the same as for the Laguerre basis leaves
Nk as the only free parameter.

3. Results

For the purpose of illustration we first take N = 1 and compare
the old and new approaches pictorially for the case of an incident
energy of 2 Hartrees. In Fig. 1 we present the integrands of Eq. (2)
and Eq. (6), without the solution vector KS(k), labelled as ‘‘kernel’’,
as well as the solution KS(k). To illustrate the behaviour of Eq. (6)
under variation of Rk and Nk, two combinations are given. We
see that the singularity is clearly visible at k =

√
3 a.u. (E =

1.5 Hartree) in the original form of the CCC equations labelled as
‘‘old’’. No such singularity exists in the new form, and yet both
yield identical solution vectors KS(k) for the two total spins, as re-
quired. The new kernel V ′

S has oscillations of a small amplitude
which varies with the spacing between the individual momenta.
This spacing depends on Rk taken for the projectile waves, but the
solutionmust be, and is, independent of Rk. The doubling of Rk from
30 to 60 a.u. halves themomenta spacing, but then doublingNk en-
sures the same maximum k.

Having shown that the method works for the simplest case, we
now show its utility by providing a comprehensive approach to the
S-wave model of e-H scattering that spans up to eight orders of
magnitude above thresholds. To show convergence we compare
N = 30 calculations using Eq. (6) with N = 20 using Eq. (2).
The results for elastic, 2S and 3S excitation are given in Fig. 2.
We see excellent agreement between the two sets indicating both
convergence and utility of the new approach (as well as the old).
Whereas in solving Eq. (2) great care needs to be exercised when
calculating cross sections so close to threshold, no such concerns
are required when solving Eq. (6), where only the total number of
points needs to be determined.

There are some interesting features that are worth mentioning.
Concentrating on 2S and 3S excitation, we see a strong suppression
of the triplet cross section near the threshold compared to the
singlet case. The singlet cross sections show a very similar shape,
with the onset of the n = 3 and n = 4 thresholds leading to a sharp
drop in cross sections for 2S and 3S states, respectively. Again, an
accurate treatment of near threshold behaviour is required to get
this behaviour accurately.

To complete our presentation the total ionisation cross sections
are given in Fig. 3. These are the summed cross sections for all
positive-energy states. Hereweare unable to get arbitrarily close to
threshold for finite N . We require at least one, and ideally several,
positive-energy (ϵn > 0) states which become open above the
ionisation threshold of 0.5Hartree. ForN = 20 andN = 30wemay
start around 0.005Hartree above threshold. Oncemorewe see that
the twomethods give good agreement indicating that convergence
is to within a few percent. As in the case of 2S and 3S excitation the
triplet cross section is considerably suppressed near threshold, due
to the Pauli Exclusion principle, as has been found previously [19].
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