
Computer Physics Communications 196 (2015) 390–397

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A parallel algorithm for random searches
M.E. Wosniack a,∗, E.P. Raposo b, G.M. Viswanathan c, M.G.E. da Luz a

a Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-980 Curitiba-PR, Brazil
b Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife-PE, Brazil
c Department of Physics and National Institute of Science and Technology of Complex Systems, Universidade Federal do Rio Grande do Norte,
59078-900 Natal-RN, Brazil

a r t i c l e i n f o

Article history:
Received 6 May 2015
Received in revised form
24 July 2015
Accepted 25 July 2015
Available online 4 August 2015

Keywords:
Random search
Parallel random search
Parallel random walk
Lévy flights

a b s t r a c t

We discuss a parallelization procedure for a two-dimensional random search of a single individual, a
typical sequential process. To assure the same features of the sequential random search in the parallel
version, we analyze the former spatial patterns of the encountered targets for different search strategies
and densities of homogeneously distributed targets.We identify a lognormal tendency for the distribution
of distances between consecutively detected targets. Then, by assigning the distinct mean and standard
deviation of this distribution for each corresponding configuration in the parallel simulations (constituted
by parallel random walkers), we are able to recover important statistical properties, e.g., the target
detection efficiency, of the original problem. The proposed parallel approach presents a speedup of nearly
one order of magnitude compared with the sequential implementation. This algorithm can be easily
adapted to different instances, as searches in three dimensions. Its possible range of applicability covers
problems in areas as diverse as automated computer searchers in high-capacity databases and animal
foraging.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Surely, computational simulations constitute a keystone tool
for our scientific understanding of nature [1]. However, given the
diversity and the potential complexity [2] of necessary (numerical)
models to study distinct phenomena, the optimization of the
underlying algorithms becomes, in many instances, a crucial
aspect [3] in their viability.

Towards this optimization goal, parallel computing strategies
[4] are particularly important. Usually, algorithms and codes that
rely on sequential decisions are not easily parallelizable, like P-
complete problems [5,6]. But in spite of that, some processes
thought to be inherently sequential, like the depth-first search [7],
have been solved in a parallel fashion thanks to a proper distri-
bution of work between the processors [8]. Other highly sequen-
tial instances, as edge coloring [9] and the maximal independent
set [10], also have found alternative parallel solutions. Further, par-
allelized algorithms may be constructed in a very different way
from the sequential counterparts, like parallel genetic algorithms

∗ Corresponding author.
E-mail address:wosniack@fisica.ufpr.br (M.E. Wosniack).

that have a super-linear performance when compared to their se-
quential versions [11]. A collection of multidisciplinary problems
allowing parallel approaches can be found in [12].

The general random search problem consists of finding a
competent strategy for the encounter of randomly located target
sites that can only be detected in the limited vicinity of the
searcher. Its possible range of applicability covers areas as diverse
as automated computer searchers of registers in high-capacity
databases [13], motion of binding enzymes or proteins along
DNA [14], economics [15], operational research like hunt for
submarines [16], and animal foraging [17,18]. In certain contexts,
such as in animal foraging [18], the knowledge of the distribution
of encountered targets provides an important way to characterize
how the resources are exploited during the search (e.g., if in an
efficient manner).

In dealing with random search through numerical models
[17,18], one often faces difficulties concerning the long time it
takes to obtainmeaningful results, a consequence of the large num-
ber of averages required. Actually, in this area of research [17,18]
the computational procedures are traditionally sequential: the
random walker moves from target to target until some halt cri-
terion is achieved. The question is then how to formulate ex-
actly the same problem, nevertheless using a framework allowing
parallelization (with a consequent reduction of computational re-
sources and time). One possibility is instead to consider a single

http://dx.doi.org/10.1016/j.cpc.2015.07.014
0010-4655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2015.07.014
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2015.07.014&domain=pdf
mailto:wosniack@fisica.ufpr.br
http://dx.doi.org/10.1016/j.cpc.2015.07.014


M.E. Wosniack et al. / Computer Physics Communications 196 (2015) 390–397 391

random walker looking for Q targets, to assume Q random walk-
ers looking for only one target. But for both models to lead to
equal results, a carefully constructed extra condition must be im-
posed to the latter version. This extra information – in the form
of initial conditions – concerns the spatial pattern that arises from
the targets detected by a sole searcher, like footprints left by the
walker on the original distribution of targets during the random
search. Our present parallelized solution to the problem is based
precisely on this idea. In fact, in order to recover the same distribu-
tion of detected targets observed in the sequential search routine,
hence yielding the same statistical properties, our parallel imple-
mentation deals with a particular choice for the initial coordinates
of each independent parallel random walker. This set of initial
coordinates is actually built (as detailed below) from the original
sequential search problem distribution of distances between two
consecutively detected targets. It is basically a lognormal curve,
whose mean and standard deviation values fully depend on the
search strategy and environment density considered.

As for the protocol technical implementation, the paralleliza-
tion is accomplished using OpenMP directives in the original (se-
quential) C code [19]. In the serial code, we have identified which
functions could be independently processed, and then have used
parallel directives to split the work between the threads. Each
thread is able to execute a set of instructions independently,
namely, to access the environment (stored in the shared memory),
and to proceed with its own random walk according to its private
variables. The OpenMP approach has been chosen because its di-
rectives have a simple implementation and also provide a natural
solution for the memory consistency problem that appears in the
parallelization.

The paper is organized as follows. In Section 2 we give a
very brief overview about parallelization of problems involving
random walks. The features of typical sequential random searches
(important for our goals) are described in Section 3. In Section 4
wedetail the proposed parallel search algorithmand comparewith
results from the usual sequential simulation. Finally, few remarks
and the conclusion are presented in Section 5.

2. Few examples of parallelization of random walks based
algorithms

As we are going to show in the next sections, our parallel
algorithm for the random search problem actually promotes a
considerable speedup of the simulations runs. So, certainly it
is a contribution of practical importance in the field. However,
conceptually the method is likewise relevant. By including a
dynamical constraint to a reformulation of the original process, we
are able to make it amenable to a parallel construction. Therefore,
we are adding a new example to the previously mentioned (and
not so large) list of systems which are essentially sequential in
character, but even then can be parallelized.

Before going into our specific problem, few comments about
the parallelization of random walks in a broader perspective are
in order next. Random walks have been important tools in Monte
Carlo simulations. For instance, to achieve flat histograms to cal-
culate the density of states, the Wang–Landau method employs
independent random walkers for different energies [20,21]. It al-
lows a proper numerical solution for larger systems, with the inde-
pendent randomwalkers playing a crucial role in this respect. One
possible parallelization of the protocol assigns one random walk
for each available thread [22], using thousands of threads from the
GPU. Nevertheless, the sampling over the energy landscape is not
sufficiently homogeneous, thus being necessary to specify more
random walkers to the lower energy regions. An OpenMP imple-
mentation [23] has been designed for the Ising model using the
Wang–Landau method. Moreover, the parallelism can be explored

in the solution of partial differential equations that use the Monte
Carlo method [24] with multiple random walkers.

In graph theory, an important application of parallel random
walks is the study of the cover time of a graph (i.e. the necessary
time to visit all the nodes). It is known that for some graphs of
size n the use of k random walkers (with k ≤ log n) can decrease
the cover time by a factor of k [25]. However, the choice of the
initial coordinates for thewalkers influences both the cover and the
hitting times of random regular graphs [26,27]. In this sense, there
is an optimal choice of initial coordinates, which is dependent on
the topology of the graph, and that minimizes both times. The s− t
connectivity problem, inwhich one has to determine if the vertices
s and t are connected to a same component, also gains efficiency
when several randomwalkers are initialized. Inwireless networks,
the use of multiple random walkers in search for a target reduces
both the computing time and the network overhead [28].

Further, in model-checking algorithms, where one has to verify
the correctness of a system implementation, parallel randomwalk-
ers have been successfully employed to explore the states space
looking for errors [29]. These independent random walks can ex-
plore more states in a fraction of the sequential time, since the re-
visits to the same location are decreased in such arrangement [30].
Some model-checking algorithms are designed with coordinate
random walkers, that simulate properties of animal foraging. The
BEE algorithm [31], inspired by the cooperative behavior in bee
hives, allocates parallel random walkers in regions of errors that
were previously identified and communicated by an exploring ran-
dom walker. The process is similar to the scouting of idle working
bees when one bee identifies a profitable flower patch and informs
its location to the colony. Another model with biological inspira-
tion uses ant robots that work in a parallel and decentralized fash-
ion, interacting only locally to explore a landscape efficiently [32].

All these examples illustrate the great computational gain in
developing parallel procedures for algorithms based on random
walks and searches. The present contribution goes exactly in this
direction.

3. Sequential search properties

In order to build a parallel version of the random search
problem, we present in this section some properties of the
sequential version of the code that are necessary for our parallel
implementation. The sequential random searchmodel is discussed
in detail in Ref. [18].

The search space is a square region of size D with periodic
boundary conditions. In this environment a given amount of
targets is distributed in a homogeneousway,with average distance
lt between them. The value of lt (measured in terms of the radius
of vision rv , see below) characterizes the density of targets: the
larger (smaller) lt , the lower (higher) the density. The targets are
non-destructive, i.e. they can be detected an unlimited number of
times during the search. The searcher is a random walker whose
step lengths ℓ are taken independently from a probability density
distribution P(ℓ) at a random direction. The interaction between
the searcher and the targets is provided by the radius of vision rv
that defines the region around the searcher where the target can
be detected (here we set rv = 1). Along the step j of length ℓj
the walker constantly looks for targets within a distance rv . If no
target is found, the searcher completes the full step. Otherwise, a
target is detected and the step ℓj is truncated. This process is then
repeated with a new step and direction taken until the stop (halt)
condition for the simulation is reached. For the probability density
function of the step length ℓ we consider a power-law P(ℓ) ∼ ℓ−µ

(1 < µ ≤ 3) for rv < ℓ < D and 0 otherwise. This power-law
distribution corresponds to the long-distance limit of the family
of α-stable Lévy distributions with index α = µ − 1 [18]. The



Download English Version:

https://daneshyari.com/en/article/6919869

Download Persian Version:

https://daneshyari.com/article/6919869

Daneshyari.com

https://daneshyari.com/en/article/6919869
https://daneshyari.com/article/6919869
https://daneshyari.com

