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a b s t r a c t

The computational efficiency of Finite Element Methods (FEMs) on parallel architectures is severely
limited by conventional sparse iterative solvers. Conventional solvers are based on a sequence of
global algebraic operations that limits their parallel efficiency. Traditionally, sophisticated programming
techniques tailored to specific CPU architectures are used to improve the poor performance of sparse
algebraic kernels. The introduced FEM Multigrid Gaussian Belief Propagation (FMGaBP) algorithm is a
novel technique that eliminates all global algebraic operations and sparse data-structures. The algorithm
is based on reformulating the FEM into a distributed variational inference problem on graphical
models. We present new formulations for FMGaBP, which enhance its computation and communication
complexities. A Helmholtz problem is used to validate the FMGaBP formulation for 2D, 3D and higher
FEM degrees. Implementation techniques for multicore architectures that exploit the parallel features
of FMGaBP are presented showing speedups compared to open-source libraries, specifically deal.II and
Trilinos. FMGaBP is also implemented onmanycore architectures in this work; Speedups of 4.8X, 2.3X and
1.5X are achieved on an NVIDIA Tesla C2075 compared to the parallel CPU implementation of FMGaBP on
dual-core, quad-core and 12-core CPUs respectively.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Manycore architectural advances inHigh Performance Comput-
ing (HPC) have introduced difficult challenges to the FEM soft-
ware design. The conventional FEM software relies on performing
global and sparse algebraic operations that severely limits its par-
allel performance. Many attempts were made to improve the per-
formance of conventional sparse computations at the expense of
sophisticated programming techniques. Such techniques are tai-
lored to specific CPU hardware architectures, such as cache access
optimizations, data-structures and code transformations [1]. These
optimizations are known to limit code portability and reusability.
For example, implementations of Conjugate Gradient (CG) solvers
for FEM problems [2], require global sparse operations which per-
form at a low fraction of the peak CPU computational through-
put [3]. Also accelerating CG solvers on parallel architectures is
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communication-bound; recent attempts to improve the commu-
nication overhead of such solvers through reformulation, namely
communication avoiding schemes, suffer from numerical insta-
bility and limited support for preconditioners [4,5]. This perfor-
mance bottleneck is even more pronounced when high accuracy
FEM analysis scales to large number of unknowns, in the order of
millions ormore,which prevents the FEM software users frompro-
ductively utilizing their parallel HPC platforms.

While existing generic andoptimized libraries such as deal.II [6],
GetFEM++ [7], and Trilinos [8] can be used for sparse FEM com-
putations; obtaining a sustained performance can be difficult due
to the varying sparsity structure for different application areas. In
addition, such libraries do not help with the costly stage of as-
sembling the sparse matrix. However, recent work by Kronbichler
et al. [9] use amatrix free (MF) approach to execute the sparse ma-
trix–vector multiply (SMVM) kernel in the CG solver. While their
approach shows promising speedups, it does not depart from the
sequential global algebraic setup of the CG solver and is only effi-
cient for high order elements. The present work is based on a novel
distributed FEM reformulation using belief propagation (BP) that
eliminates the dependency on any sparse data-structures or alge-
braic operations; hence, attacking the root-cause of the problem.
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The belief propagation algorithm, as proposed by Pearl in [10], is
a recursivemessage passing algorithmon graphicalmodels that ef-
ficiently computes the marginal distribution of each variable node
by sharing intermediate results. If the graph is a tree, then BP is
guaranteed to converge to exact marginals. However, if the graph
contains cycles, as typically the case inmany practical applications,
then BP takes an iterative form, referred to as Loopy Belief Propa-
gation (LBP), which can be used to obtain an approximation for the
marginals [10–14]. BP recently showed excellent empirical results
in certain applications, such as machine learning, channel decod-
ing, and computer vision [15–25]. Shental et al. [26] introduced
the Gaussian BP algorithm as a parallel solver for a linear system
of equations by modeling it as a pairwise graphical model. While
the solver showed great promise for highly parallel computations
on diagonally dominant matrices [27], it does not scale for large
FEMmatrices. It also fails to converge for high order FEM problems
[28,29]. In addition, such a solver would still require assembling a
large sparse data-structure.

The introduced Finite Element Gaussian Belief Propagation
(FGaBP) algorithm and its multigrid variant, the FMGaBP algo-
rithm, presented in [28,30,31], are distributed reformulations of
the FEM that results in highly efficient parallel implementations.
The algorithmsprovide a highly parallel approach to processing the
FEM problem, element-by-element, based on distributed message
communication and localized computations. This provides an algo-
rithm amicable to different parallel computing architectures such
as multicore CPUs and manycore GPUs.

In thiswork,we introduce new formulations for the FGaBP algo-
rithm that better exploit its distributed nature. The newalgorithms
provide more efficient memory bandwidth utilization and consid-
erably lower computational complexity; that is, reducing the lo-
cal computational complexity from O


n3


to O


n2


, where n is the

rank of the local (element) FEM matrix. We verify the numerical
results of the new formulation using the definite Helmholtz equa-
tionwith a known solution.We also compare the new formulations
with state-of-the-art open-source libraries such as deal.II [6] and
Trilinos [8] on modern multicore CPUs. Implementation details of
FMGaBP on GPUs are also presented in this work and its perfor-
mance is compared to multicore CPUs.

The paper is organized as follows. In Section 2, a background on
the FGaBP and FMGaBP algorithms is provided, which illustrates
the algorithms and their key parallel features. In Section 3, we
present the new formulations that reduce computation and com-
munication costs of FGaBP. Section 4 presents implementation de-
tails onmulticore andmanycore architectures. Finally in Section 5,
we present and discuss speedup results and close with concluding
remarks.

2. Preliminary

In this section, an overview of the FGaBP and FMGaBP
algorithms is provided; illustrating their distributed attributes,
which will later be used to develop more efficient variants of the
algorithms.

2.1. The FGaBP algorithm

In the following, the FGaBP algorithm is presented in threemain
stages. First, the FEM problem is transformed into a probabilistic
inference problem. Second, a factor graph model of the FEM
problem is created to facilitate the execution of a computational
inference algorithm such as BP. Finally, the FGaBP update rules and
algorithm is presented.

2.1.1. FEM as a variational inference
The variational form of the Helmholtz equation as discretized

by the FEM is generally represented as follows [32,33]:

F (U) =

s∈S

Fs(Us) (1)

where S is the set of all finite elements (local functions); Us are the
field unknowns for element s; and Fs is the energy-like contribu-
tion of each finite element. The local function Fs takes a quadratic
form that can be shown as:

Fs(Us) =
1
2
UT
s MsUs − BT

s U (2)

in which Ms is the element characteristic matrix with dimensions
n× nwhere n is the number of Local element Degrees of Freedom
(LDOF), and Bs is the element source vector.

Conventionally, the FEM solution is obtained by setting ∂F
∂U = 0,

which results in a large and sparse linear system of equations
presented as:

Au = b (3)

where A is a large sparse matrix with dimensions N × N; N is the
number of Global Degrees of Freedom (GDOF) of the linear system;
and b is the Right-Hand Side (RHS) vector. The linear system is
typically solved using iterative solvers such as the Preconditioned
Conjugate Gradient (PCG) method when A is Symmetric Positive
Definite (SPD).

The FGaBP algorithm takes a different approach by directlymin-
imizing the energy functional (1) using the BP inference algorithm.
A variational inference formulation of FEM is created bymodifying
(1) as follows:

P (U) = exp [−F ] (4)

=
1
Z


s∈S

Ψs(Us) (5)

where Z is a normalizing constant, andΨs(Us) are local factor func-
tions expressed as:

Ψs(Us) = exp

−

1
2
UT
s MsUs + BT

s Us


. (6)

Considering applicationswhereMs is SPD, the functionΨs, as in (6),
takes the form of an unnormalized multivariate Gaussian distri-
bution. In addition, it can be shown using convex analysis [16,34]
that P is a valid multivariate Gaussian distribution functional of
the joint Gaussian random variables U . The solution point to the
original problem, which is the stationary point of the functional
F , can be restated as:

argmin
U

F = argmax
U

P . (7)

Since the Gaussian probability P is maximized when U = µ,
where µ is the marginal mean vector of P , the FEM problem can
alternatively be solved by employing computational inference for
finding the marginal means of U under the distribution P . Hence
BP inference algorithms will be employed to efficiently compute
the marginal means of the random variables U .

2.1.2. FEM factor graph
Because P is directly derived from the FEM variational form, it

is conveniently represented in a factored form as shown in (5). As a
result, we can define a graphical model to facilitate the derivation
of the BP update rules. One widely used graphical model is a Factor
Graph (FG) [15], which is a bipartite graphical model that directly
represents the factorization of P . In our setting, we refer to such
a FG as the FEM-FG. The FEM-FG, as shown in Fig. 1(b), includes
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