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a b s t r a c t

To find a numerical solution for soliton-like structures model, we propose an adaptive meshless method
based on the optimal sampling density (OSD) of kernel interpolation. We first consider the relationship
between the optimal nodal distribution and the error bound of kernel interpolation, and obtain the
corresponding OSD. Then we introduce an OSD based kernel interpolation method to approximate a
function. And a numerical two-step meshless method is finally suggested for soliton-like structures
model, taking the sine-Gordon equation as an example. In each time level, the predictor process takes
field nodes with the same node distribution, while the final process takes field nodes arranged adaptively
according to each OSD. With only a little added computational cost, the solution accuracy can be much
improved. From the numerical examples, it is shown that the proposed method is very helpful for
simulating soliton-like structures model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, more andmore attention has been paid for soli-
ton-like structures model in higher dimensions [1–3]. As Argyris
et al. [4] said, solitons represent essentially special wave-like solu-
tions to nonlinear dynamic equations, and due to dispersion, these
waves progress through the medium without experiencing any
deformation. Furthermore, after interaction with other solitons,
there appears no deformation. Soliton solutions in different analyt-
ical methods and numerical techniques for somewell-known PDE,
such as theKorteweg–deVries equation, the nonlinear Schrödinger
equation and the sine-Gordon equation (SGE) [4] etc., can be
found in [5]. According to the representation of approximate solu-
tions, the numerical methods for nonlinear PDEs include fourmain
classes: the finite difference methods (FDMs), the finite element
methods (FEMs), the finite volume methods (FVMs) and the spec-
tral methods [4,6–19].

However, in the field of numerical methods for solving PDE, al-
though the previous methods are widely used in engineering field
due to their robustness and applicability, they usually require the
construction and update of a mesh, and this is the main inherent
disadvantage in all of these methods. Therefore, in order to over-
come these difficulties, in recent years, other types of numerical
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techniques calledmeshless method have attracted researchers’ at-
tention. It can establish the system of algebraic equations for the
whole problem domain without using the predefined mesh for the
domain discretization. And it does not require any a priori informa-
tion on the relationship between the nodes for the interpolation or
approximation of unknown functions of field variables [20].

Generally, meshless methods can be divided into strong forms
and weak forms. In a strong form formulation, it is assumed that
the approximate unknown function should have sufficient degree
of consistency, so that it is differentiable up to the order of the PDEs,
and a series ofmeshless strong form approacheswere presented in
Refs. [10,21–30]. Unfortunately, a strong form of equation is diffi-
cult for practical engineering problems that are usually complex
in nature. In contrast to the strong form, the weak form requires a
weaker consistency on the approximate function [20]. This is used
to achieve a set of algebraic equations through an integral opera-
tionusing sets of background cells thatmaybe constructed globally
or locally in the problem domain. The global weak form methods
are said to be not ‘‘truly’’ meshlessmethod, because thesemethods
need global background cells for numerical integration. To avoid
this, the local weak formmethod is developed, then the numerical
integrations are carried out over a local quadrature domain defined
for a node. There are many researches proposed to meshless local
weak form methods in Refs. [31–37].

One of the main advantages of meshless methods is that the
selection of field nodes could be controlled automatically and
adaptively in theory, but for most of existing methods of solving
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nonlinear PDE, the nodal distribution is preassigned [24,29,38–43].
And it is clear that an adaptive selection of nodes will be more ef-
fective and accurate than a preassigned nodal distribution to cap-
ture the soliton structure. Hence, the starting point of this paper
is to build an adaptive nodal selection based meshless method for
solving soliton-like structures model.

In this paper, we first consider the optimal nodal distribution
of kernel interpolation for a given error. Then a predictor based
method is introduced to obtain an improved kernel interpolation.
Finally, a numerical meshless method is suggested for soliton-like
structures model on the basis of this technique. The main charac-
teristic of our method is that it takes different node distributions
with the same number in each time step. And it selects field nodes
adaptively for every time steps. This paper’s outline is as follows:
Section 2 presents the relationship between the sampling density
and the error bound of kernel interpolation, and proposes an op-
timal sampling density of kernel interpolation. Section 3 obtains
a stable optimal sampling density and a neighborhood importance
measure of any nodes, andwith the help of this optimal density, an
improved kernel interpolationmethod is proposed to approximate
a function. Then we choose (n+ 1)-dimensional SGE as an applied
model, and propose an adaptive meshless method for solving it in
Section 4. In Section 5, we provide two examples with a compari-
son of numerical error analysis. Section 6 summarizes the relevant
results.

2. Kernel interpolation and its local error bound

In this paper, we will use a special kernel interpolation to
approximate a function. By a kernel function,wemean a symmetric
Kλ(x) = K(x, λ) satisfying [44,45]

Kλ(x)dx = 1

where the parameter λ is a positive number, and its selection
depends on the sampling distribution of data. Moreover, let k
be any positive integer, then a 2k orders kernel function Kλ(x)
satisfies [44,45]

R
xmKλ(x)dx =

1 m = 0
0 0 < m < 2k
Ckλ

2k m = 2k
(1)

wherem = 0, 1, . . . , 2k and Ck is a nonzero constant. Thenwewill
first discuss the relationship between the sampling distribution
and the interpolation error.

2.1. Sampling distribution and interpolation error

Let us start with a simple example. Suppose f (x) is a function
and has following expression:

f (x) = 4 arctan

1
2
sech(x)


−

1
3
exp(−2x2) cos(10x) (2)

where x ∈ [−5, 5]. Moreover, suppose g1(x) is an interpolating
function of f (x) with respect to the equally spaced nodes χ1 with
the size 21, and g2(x) is same to g1(x), but with 41 equally spaced
nodes χ2. Fig. 1 displays the graphs of f (x) and its approximations.
Then the corresponding absolute values of these two interpolation
errors are shown in Fig. 2(a).

Besides, in order to test the performance of these interpolating
functions, we use the L2 error, L∞ error and root-mean-square
(RMS) error norms defined as

L2 = ∥f (xi)− g(xi)∥2 =

 1
M

M
i=1

|f (xi)− g(xi)|2 (3)

L∞ = ∥f (xi)− g(xi)∥∞ = max
16i6M

|f (xi)− g(xi)| (4)

Fig. 1. The function f (x) and its two approximation methods.

Table 1
A comparison of L2 , L∞ and RMS errors of example.

Method L2-error L∞-error RMS error

g1(x) 0.1011 0.4721 0.0221
g2(x) 0.0121 0.0454 0.0019
g3(x) 0.0121 0.0203 0.0026

and

RMS =
1
M

 M
i=1

|f (xi)− g(xi)|2 (5)

where M is the number of test nodes, f (xi) is the exact solution,
and g(xi) is the numerical solution. The results of these errors with
different interpolating functions are presented in Table 1. From
these results we can notice that the estimate g1(x) in the interval
[−1, 1] is quite different from the original f (x) and its L∞-error is
0.4721 near x = ±0.3. If we increase the sample size from N = 21
to 41, that is, the interpolation function is changed from g1 to g2,
then the L∞ error of estimation g2(x) only decreases to 0.0454.

However, for a function approximation, a betterway of the node
distribution is not equally spaced, but is spaced appropriately in
order to improve the accuracy of the approximation. For example,
the function f (x) in Eq. (2) is complex in a small region of thewhole
interval, andwewish to improve the accuracy of the region that the
corresponding error is larger than other regions. In other words,
for a given sample size N , the optimal strategy of this function is
to try to move some points in the region with a small local error
into somewhere with a large one. Suppose the given sample size
is 21, then a special kind of nodes χ3 (see Fig. 2(b) for details) can
be developed according to an optimal sample strategy, which we
will discuss in the following sections of this paper. Then we have
the third interpolating function g3(x) of f (x) with respect to these
special nodes (see Fig. 1). From Table 1, we can find out that all
kinds of interpolation errors of g3(x) are smaller than those of g1(x)
and g2(x). And from Figs. 1 and 2(a), it is noted that an appropriate
sampling distribution is able to improve the accuracy effectively
for function approximation. Andwe shall give a theoretical analysis
of this point in the next subsection.

2.2. Optimal sampling density of kernel interpolation

Our emphasis here is given to find out the optimal density of
kernel interpolation for a given error. Suppose Kλ(x) is a kernel
function, since Kλ is an even symmetry function, it follows that:

+∞

−∞

Kλ(x − t)dt =


+∞

−∞

Kλ(t − x)dt.
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