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a b s t r a c t

Reactive molecular dynamics (RMD) simulations describe chemical reactions at orders-of-magnitude
faster computing speed compared with quantum molecular dynamics (QMD) simulations. A major
computational bottleneck of RMD is charge-equilibration (QEq) calculation to describe charge transfer
between atoms. Here, we eliminate the speed-limiting iterative minimization of the Coulombic energy in
QEq calculation by adapting an extended-Lagrangian scheme that was recently proposed in the context
of QMD simulations, Souvatzis and Niklasson (2014). The resulting XRMD simulation code drastically
improves energy conservation compared with our previous RMD code, Nomura et al. (2008), while
substantially reducing the time-to-solution. TheXRMDcode has been implemented on parallel computers
based on spatial decomposition, achieving aweak-scaling parallel efficiency of 0.977 on 786,432 IBM Blue
Gene/Q cores for a 67.6 billion-atom system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics (MD) simulations follow time evolution of
the positions, rN = {ri | i = 1, . . . ,N}, of N atoms by numeri-
cally integrating Newton’s equations of motion, where the atomic
force law is mathematically encoded in the interatomic potential
energy E(rN) [1]. Reliable interatomic potentials are key to ac-
curately describing thermomechanical properties of materials. To
describematerial processes involving chemical reactions, in partic-
ular, quantum molecular dynamics (QMD) simulations [2–5] de-
termine the force law by minimizing the potential, E(rN , ψNel),
as a functional of electronic wave functions ψNel(r) = {ψn(r) |

n = 1, . . . ,Nel} (Nel is the number of wave functions) usually in
the framework of density functional theory (DFT) [6]. Despite re-
markable progresses in O(N) DFT algorithms [7–10], the largest
QMD simulations to date have been limited to N ∼ 104 for the
duration of 10−11 s [11,12]. To extend the limited spatiotemporal
scales covered by QMD simulations, reactive molecular dynamics
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(RMD) simulation methods [13] have been developed based on a
first principles-based reactive force-field (ReaxFF) approach [14,
15]. The ReaxFF approach significantly reduces the computational
cost of simulating chemical reactions, while reproducing the en-
ergy surfaces and barriers as well as charge distributions of DFT
calculations. RMD simulations describe formation and breakage of
chemical bonds using reactive bond orders [14,16,17]. The most
intensive computation in RMD simulations arises from a charge-
equilibration (QEq) scheme [18–20] to describe charge transfer
between atoms. QEq treats variable atomic charges as dynamic
variables, qN = {qi | i = 1, . . . ,N}. The charges and the resulting
force law are determined by minimizing the potential, E(rN , qN),
with respect to qN at every MD step. This variable N-charge prob-
lem is commonly solved iteratively with the conjugate gradient
(CG) method [21,22]. Though recent advancements in parallel
ReaxFF algorithms [23–25] have enabled large RMD simulations
[26–28] involving multimillion atoms, QEq computation remains
to be the major bottleneck toward achieving billion-atom RMD
simulations based on ReaxFF. The problem is that an excessively
large number of CG iterations are required to reach sufficient con-
vergence of charges qN to guarantee the conservation of the to-
tal energy as a function of time. Insufficiently converged charges
act as a heat sink of energy, and the resulting broken time re-
versibility causes the total energy to drift over time. A similar
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trade-off between the computational speed and energy conserva-
tion is encountered in QMD simulations, where insufficient con-
vergence of the iterative refinement of wave functionsψNel causes
serious energy drift. Niklasson proposed an extended Lagrangian
scheme [29–31] that achieves excellent long-time energy con-
servation with drastically reduced number of iterations. In fact,
an extended Lagrangian scheme with no iteration (i.e. requiring
only one evaluation of energy gradient) has recently been demon-
strated [32]. The key idea is to introduce auxiliary wave functions
as dynamic variables that are numerically integrated by reversible,
symplectic integration schemes to address the broken reversibil-
ity problem, while the auxiliary wave functions are constrained to
iteratively determined wave functions by a harmonic potential.

In this paper, the extended Lagrangian scheme [29–32] is
adapted to RMD simulations, thereby eliminating speed-limiting
iterations in QEq calculation. The resulting XRMD simulation code
drastically improves the energy conservation compared with our
previous RMD code [23], while substantially reducing the time-to-
solution. This paper presents key features and implementation de-
tails of XRMD. The rest of the paper is organized as follows. The
next section describes the computational method. Benchmark re-
sults are presented in Section 3, and Section 4 contains conclusions.

2. Methods

2.1. Charge-equilibration (QEq) method

The interatomic potential energy in ReaxFF is composed of a
number of bonded and nonbonded terms [14,15]. The nonbonded
terms are Coulombic and van der Waals energies. The Coulombic
energy is expressed as

ECoulomb(rN , qN) =


i

χiqi +
1
2


i


j

qiH(rij)qj, (1)

where ri, χi, and qi are the position, electronegativity, and charge
of the ith atom, respectively, and rij is the distance between a pair
of atoms i and j. In Eq. (1), the Coulombic interaction is defined as

H(rij) = Jiδij +
T (rij)

r3ij + γ−3
ij

1/3 (1 − δij), (2)

where Ji is the self-Coulomb repulsion coefficient, γij is a parameter
for the smeared Coulombic function, and the Kronecker delta is
δij = 1 (i = j) or 0 (i ≠ j). The Coulombic interaction is screened
using a taper function, T (r), which has a finite range with a cutoff
length of rc .

In ReaxFF, atomic charges qi are variables that change dynam-
ically in time. When atomic positions are updated during RMD
simulation, the QEq subroutine updates charge distribution qN by
minimizing ECoulomb subject to charge-neutrality constraint,Σi qi =

0. With the Lagrange-multiplier method, the constrained energy
minimization is equivalent to solving the electronegativity equal-
ization problem [18,22,33,19],

gi ≡ −
∂ECoulomb

∂qi
= −µ, (3)

where µ is the electrochemical potential. We solve this problem
iteratively using the CG method [21,23,34].

2.2. Extended Lagrangian QEq scheme

Our extended Lagrangian QEq scheme introduces auxiliary
variables, θN = {θi | i = 1, . . . ,N}. System dynamics for extended
Lagrangian reactive molecular dynamics (XRMD) simulations is
derived from the extended Lagrangian,

LXRMD = LRMD +
µ

2


i

θ̇2i −
µω2

2


i

(θi − qi)2 , (4)

Table 1
Energy deviation during MD simulation for 1 ps.

Method Energy deviation
(10−3 kcal/mol/atom)

XRMD 6.8
RMD (CG tolerance: 10−8) 4.1
RMD (one CG iteration per MD step) 499

where LRMD is the RMD Lagrangian,

LMD =


i

mi

2
ṙ2i − E(rN), (5)

with mi being the mass of the ith atom and the dot denoting time
derivative. In Eq. (4), µ and ω are fictitious mass and frequency
parameters for the auxiliary charge degrees of freedom.

The time evolution of the dynamical system described by LXRMD
is determined by Euler–Lagrange equations of motion. In the limit
of µ → 0, the equations become

mir̈i = −
∂

∂ri
E(rN), (6)

θ̈i = ω2(qi − θi). (7)

We numerically integrate Eqs. (6) and (7) using the velocity Verlet
algorithmwith a unit time step of δt . At each time step,we perform
just one step of CG iteration towardminimizing the Coulombic en-
ergy, Eq. (1), as a function of qN using the gradient in Eq. (3).We use
the auxiliary variable θN as an initial guess for the CG optimization
of qN . For extended Lagrangian-based QMD simulations, the rec-
ommended value for the dimensionless parameter, K = ω2δt2, is
2 [31].We have found that the same valueworks for XRMD aswell,
and K = 2 will be used in the numerical tests discussed below.

We have implemented the extended Lagrangian QEq scheme
in our scalable parallel RMD simulation code [23]. All XRMD com-
putations are parallelized using spatial decomposition, where the
simulated system is decomposed into spatially localized subsys-
tems and each processor is assigned computations associated with
one subsystem. Message passing is used to exchange necessary
data for the computations utilizing the message passing interface
(MPI) library. The XRMD program is written in Fortran 90.

3. Results

We test our extended Lagrangian QEq scheme and the parallel
XRMDcodeusing oxidation of a silicon carbidenanoparticle (n-SiC)
as an example. We adopt ReaxFF parameterization by Newsome
et al. [35,36]. A n-SiC composed of 25 silicon (Si) and 25 carbon
(C) atoms is placed in oxygen environment. We place 50 oxygen
(O2) molecules randomly around the n-SiC using a Monte Carlo
procedure. The total number of atoms is 150 in a cubic box of side
16.289 Å. Fig. 1(a) shows the initial configuration of the n-SiC+O2
system. The equations of motion are integrated using a unit time
step of 0.25 fs.We first thermalize the system at temperature 300 K
by velocity scaling. Subsequently, we switch to themicrocanonical
ensemble to test the energy conservation. Single MPI process is
used for this test.

Fig. 1(b) shows the total energy as a function of time during
MD simulation. We compare three cases: (1) XRMD code; (2) RMD
code, where CG iterations at each MD step are continued until the
change in the Coulombic energy ECoulomb per iteration falls below
10−8 of |ECoulomb|; and (3) RMD code performing only one CG iter-
ation per MD step. Total energy conservation of XRMD is compa-
rable to converged RMD, while RMD with single CG step exhibits
significant energy drift. Table 1 summarizes total energy drift dur-
ing 1 ps MD simulation with the three methods.
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