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a b s t r a c t

A locally one-dimensional (LOD) semi-implicit scheme is proposed for improving the numerical efficiency
in the solving of parabolic partial differential equations in phase-field simulations. With LOD splitting,
multi-dimensional parabolic problems can be numerically approximated by treating each of the spatial
variables individually in single cycles. Additionally, each spatial variable can be treated in either real or
Fourier space, allowing equations to be solved across a range of boundary conditions, including periodic,
non-periodic, and even partial periodic. The proposed LOD semi-implicit scheme exhibits noticeable
advantages over both explicit and implicit traditional schemes in terms of computational efficiency and
accuracy, as demonstrated by two standard numerical tests. It is anticipated that future large-scale phase-
field simulations will benefit greatly from the use of this LOD scheme.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past several decades, the phase-field method has been
emerged as a powerful tool for simulating the microstructure
evolution processes of various materials [1–5]. In particular, the
assumption of diffuse interface in the phase-field method allows
explicit tracking of interfaces positions to be avoided, a feat
that is difficult to achieve with sharp-interface models in two-
dimensional (2-D) and three-dimensional (3-D) simulations.
Another advantage of the phase-fieldmethod lies in its description
of the non-equilibrium state in general, which has resulted in
its being widely employed throughout the materials community.
Application of the phase-fieldmethodhas recently broadened even
further due to the development of phase-field model with finite
interface dissipation [6–8]. This model can be used with various
kinetic processes at the mesoscopic scale without being restricted
to a specific type of transformation, extending its application range
from chemical equilibrium to strongly non-equilibrium phase
transformations.

In typical phase-field models, a given system is described using
a set of field variables. The temporal evolution of these field
variables is governed by partial differential equations (PDEs), such
as the Ginzburg–Landau [9] and Cahn–Hilliard equations [10].
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Because such PDEs are usually nonlinear, they can be only solved
numerically. The classical forward-Euler (FE) finite-difference (FD)
method is most commonly employed in phase-field simulations,
with FE used for time and FD for space, because inmost cases, it can
be easily coded. In order to guarantee the stability of the numerical
solutions obtained with the classical FE–FD method, the time step
1t is constrained by the space step 1x [11]. This extremely limits
simulation efficiency, especially when the PDEs have coefficients
of different orders of magnitude. Such constraint can be avoided
using the implicit FD scheme, but in 2-D and 3-D cases this leads
to a large band matrix, which in turn requires researchers with
specific skill sets of computer for storage and operation of such
matrix.

In order to improve the efficiency and accuracy of phase-field
simulations, a number of advanced numerical schemes have been
developed to replace the classical FE–FDmethod. These include the
semi-implicit Fourier-spectral (FS) scheme [12,13], which ensures
higher accuracy through exponential convergence, and the FFTW
(the Faster Fourier Transform in the West) library [14], which op-
erates at a higher efficiency. However, the semi-implicit FS scheme
can be only employed with periodic boundary conditions, and
thus lacks universal application. Using a more general Legendre or
Chebyshev transform instead of a Fourier transform, semi-implicit
spectral schemes can accommodate Dirichlet, Neumann, or mixed
boundary conditions [2,15,16]. Unfortunately, this also prevents
wide application in the phase-field community, as both Legendre
and Chebyshev transforms are more complicated than the Fourier
transform.
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Consequently, we propose a numerical scheme for phase-field
modeling based on so-called locally one-dimensional (LOD) split-
ting [17] that is both accurate and efficient. LOD is an operator split-
ting method, that splits multi-dimensional problems into multiple
one-dimensional problems. A significant and well-known advan-
tage of such splitting methods in the construction of implicit FD
schemes in 2-D and 3-D cases is that large band matrices can be
avoided. In fact as early as in 1955, the ADI (alternating direction
implicit) method, based on the strategy of operator splitting, was
proposed for solving parabolic and elliptic PDEs [18]. More than
half a century later, ADI, LOD, and their variants have been widely
used to solve parabolic, elliptic, andhyperbolic PDEs. Themajor dif-
ference between LODandADI is how the operator is split, for exam-
ple, the Laplacian. It has been found LOD splitting solves parabolic
PDEs in a way that enables each step to be treated in Fourier space
with ease, meaning that each spatial variable can be treated in ei-
ther real or Fourier space depending on the boundary conditions. If
the periodic boundary condition is set along the X direction, then
the semi-implicit FS scheme can be used for the variable along the
X direction. Thus, a scheme that combines LOD splitting with a
semi-implicit FS method can solve parabolic PDEs in phase-field
simulations with greater computational efficiency and accuracy
than traditional scheme.

In next section, we present a numerical scheme for phase-
field modeling based on the LOD splitting and semi-implicit
methods and discuss different cases, such as constant and variable
coefficients in parabolic PDEs. In Section 3, the advanced features
of the proposed scheme are demonstrated using two standard
numerical tests: the standard Fick’s diffusion equation and aphase-
field simulation of the coarsening and ripening processes of a Si–As
alloy. Finally, a summary of the conclusions is given.

2. A locally one-dimensional semi-implicit scheme

In a typical phase-field model, there are two types of parabolic
PDEs, which can be represented by the following formulae, pro-
vided here in a 2-D scheme for simplicity:

∂u(x, y, t)
∂t

= a∇2u + f , (1)

and

∂u(x, y, t)
∂t

= ∇(a∇u) + f , (2)

where t ∈ [0, +∞] and (x, y) ∈ Ω .Ω is a bounded rectangular re-
gion in ℜ

2 with a boundary of ∂Ω . The unknown u(x, y, t) can be
replaced by either the phase-field or concentration variable. a(u)
is a positive coefficient and f (u) represents the remaining source
term.

In a general case, we can assume that Ω = [0, 1] × [0, 1]. The
system has a Dirichlet condition along the X direction with a peri-
odic condition along the Y direction. The initial and boundary con-
ditions are then expressed as

I.C . u(x, y, 0) = u0(x, y),
B.C . u(0, y, t) = ul(y), u(1, y, t) = ur(y)

u(x, 0, t) = u(x, 1, t),
(3)

where u0(x, y), ul(y), and ur(y) are the given functions. The rectan-
gular regionΩ can be divided into (Nx+2)(Ny+2) points. (Nx+2)
(or (Ny + 2)) and 1x (or 1y) are the number of grids and the space
step along the X (or Y ) directions. The time step is labeled as 1t .
In addition, R = 1t/(1x)2, tk = k1t , ui,j = u(i1x, j1y, t) and
uk
i,j = u(i1x, j1y, k1t) will be used in this paper.
To clearly demonstrate the proposed numerical scheme, we

start the simplest case for Eqs. (1) and (2): that is, when the coeffi-
cient a is a constant. In fact, in this case, Eq. (2) is reduced to Eq. (1).

2.1. The locally one-dimensional splitting

With LOD splitting, spatial variables in the multi-dimensional
parabolic problems can be individually treated in single cycles [19].
Its contractivity, [20] and unconditional convergence [21] in solv-
ing parabolic initial–boundary value problems have been proven
mathematically. By means of LOD splitting, we can begin by using
the following symmetry fractional step procedures:

1
2

∂u
∂t

= a
∂2

∂x2
u +

1
2
f , t ∈ [tk, tk+1/2

] (4)

and

1
2

∂u
∂t

= a
∂2

∂y2
u +

1
2
f t ∈ [tk+1/2, tk+1

]. (5)

Due to the different boundary conditions along the X and Y di-
rections, Eqs. (4) and (5) can be treated differently. Thus, for Eq. (4),
we employ the FD approximation directly on its right-hand side, as
such:

1
2

∂ui,j

∂t
=

a
(1x)2

(ui+1,j + ui−1,j − 2ui,j) +
1
2
fi,j. (6)

Due to the periodic boundary condition along the Y direction,
Eq. (5) can be treated in Fourier space, such that

1
2

∂ui,j

∂t
= −ag2

j ·ui,j +
1
2
fi,j. (7)

whereui,j andf (ui,j) represent the one-dimensional Fourier trans-
forms (for variable y) of ui,j and f (ui,j), respectively. gj is a one-
dimensional vector in the corresponding Fourier space.

Let I represent the imaginary unit, and the definition of above-
mentioned Fourier transform and its inverse transform can then be
given by

ui,j(x, gj) =


+∞

−∞

ui,j(x, y)e−2π I·gj·ydy, (8)

and

ui,j(x, y) =


+∞

−∞

ui,j(x, gj)e−2π I·gj·ydgj. (9)

Though periodic boundary conditions can also be dealt with
using the FD treatment, using LOD splitting allows us to apply the
FS method in the direction with the periodic boundary condition,
which improves both computational accuracy and efficiency to a
considerable degree.

2.2. The semi-implicit method

As described above, through LOD splitting, the multi-
dimensional problem has been transformed into multiple one-
dimensional problems. Subsequently, implicit treatment is still
needed to eliminate the limitation of the constraint between time
and space steps and thus improve computational efficiency. Com-
monly used implicit methods include the backward-Euler (BE) and
the Crank–Nicolson (CN)methods. The CNmethod,which provides
the second-order convergence in time, is the equal weight combi-
nation of both the FE and BEmethods, which only provide the first-
order convergence. Thus,wewill construct CN formats for iteration
as far as possible.

Unfortunately, completely implicit methods are usually nonlin-
ear and thus unsolvable due to the nonlinearity of the source term
f (u). To obtain a solvable scheme, implicit method can be adapted
into a semi-implicit one. This strategy is generally achieved by
treating the source term as a constant in the single cycles t ∈

[tk, tk+1
].
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