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a b s t r a c t

The numerical solution of transport equations for energetic charged particles in space is generally very
costly in terms of time. Besides the use of multi-core CPUs and computer clusters in order to decrease
the computation times, high performance calculations on graphics processing units (GPUs) have become
available during the last years. In this workwe introduce and describe a GPU-accelerated implementation
of Parker’s equation using Stochastic Differential Equations (SDEs) for the simulation of the transport of
energetic charged particles with the CUDA toolkit, which is the focus of this work. We briefly discuss the
set of SDEs arising from Parker’s transport equation and their application to boundary value problems
such as that of the Jovian magnetosphere. We compare the runtimes of the GPU code with a CPU version
of the same algorithm. Compared to the CPU implementation (using OpenMP and eight threads) we
find a performance increase of about a factor of 10–60, depending on the assumed set of parameters.
Furthermore, we benchmark our simulation using the results of an existing SDE implementation of
Parker’s transport equation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The propagation of charged particles in the heliosphere,
i.e. the region influenced by the solar wind and the interplan-
etary magnetic field (IMF), is generally described by the trans-
port equation derived by Parker [1] and is a special case of the
general Fokker–Planck equation. Parker’s equation describes the
pitch–angle averaged diffusion of particles in the heliosphere, in-
cluding adiabatic energy changes, convection with the solar wind,
as well as drifts arising from gradients and curvatures in the IMF
and reads
∂ f
∂t

+ (vsw + ⟨vd⟩) · ∇f  
convection & drifts

−
1
3
(∇ · vsw)

∂

∂E
(Γ Ef )  

ad. energy changes

= ∇ · (K · ∇f )  
diffusion

+Q . (1)

Here, f = f (x, E, t) is the phase space density, proportional to the
cosmic ray intensity, and is a function of position, energy and time.
The solar wind velocity and the averaged drift velocities are given
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by vsw and vd, respectively. Adiabatic energy changes are described
by the third term on the left side where

Γ =
E + 2Er
E + Er

, (2)

with Er being the rest energy of the particles and E the kinetic
energy. In the expanding solar wind plasma, i.e. (∇ · vsw) > 0,
particles lose energywith time. The diffusion tensorK, arising from
fluctuations in the interplanetary magnetic field [2], contains the
diffusion coefficient parallel to the mean magnetic field κ∥ and in
the two perpendicular directions, κ⊥,1 and κ⊥,2. These diffusion
coefficients generally depend on position and time as well as on
the energy of the particles. Q represents any particle sources in the
heliosphere and can also be a function of position, energy and time.
For the simulation presented here, Q = 0.

For the examples shown in this work we make use of the
expression

λ(r)∥ =
λ0

2


1 +

r
r0


, (3)

for the particle’s parallel mean free path. Here, λ0 is the mean
free path at a point of reference (r0), e.g. Earth and r is the radial
distance from the Sun. The parallel diffusion coefficient follows as

κ(r)∥ =
vλ(r)∥

3
, (4)
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where v is the particle’s speed. The relation between the parallel
and perpendicular diffusion coefficients is assumed to be

κ(r)⊥1,2 = χκ(r)∥, (5)

with χ = 0.01 a constant. Consequently, the diffusion coefficients
used here increasewith radial distance from the Sun, i.e. the center
of the coordinate system.

There are four primary sources of charged particles that can be
observed in the heliosphere: galactic cosmic rays (GCRs) entering
the heliosphere from the outside [3], solar energetic particle (SEPs)
accelerated during so-called solar flare events [4], the anomalous
cosmic ray component thought to be accelerated in the outer re-
gions of the heliosphere [5] and particles that originate from plan-
etary magnetospheres. Well-known amongst the latter sources is
the Jovianmagnetosphere, a quasi-constant source of electrons [6],
so-called Jovian electrons (JEs) of energies ≤ 20 MeV that can be
observed in wide regions of the heliosphere and are the dominant
contribution to the electron fluxes observed at these energies.

Parker’s transport equation can be applied to a wide field of
heliospheric and astrophysical particle transport problems, e.g. the
propagation of Jovian electrons [7,8] and galactic cosmic rays [9,10,
3] in the heliosphere and, in a more general form, also for particle
propagation in the galaxy [11,12] and, for the case of very small
diffusion coefficients, for the propagation of SEPs.

2. SDE representation of the transport equation

Parker’s transport equation is traditionally solved using finite-
difference methods. However, in recent years a different approach
using Stochastic Differential Equations (SDEs) was pursued by
several authors, amongst others, [13–20]. The foundations of SDEs
and their solution were derived in 1944 by K. Itō (cf. [21]); a
comprehensive theoretical discussion is for example given by
Øksendal [22] while Iacus [23] gives a more practical introduction
to the numerical solution of SDEs.

A general expression for a set of SDEs can be written as

dxi = aidt +

k
i

k
j

bi,jdWi, (6)

where xi represents a spatial (or energy) coordinate, ai drift terms
(referring to first order, deterministic terms; not to be confused
with the physical process of particle drifts), bi,j diffusion terms
and k corresponds to the dimensions of the problem. In the last
term bi,j is frequently called the volatility matrix (or tensor),
especially in the field of financial mathematics [24] since bi,j is not
identical (but related) to the diffusion tensor that appears in the
equivalent Fokker–Planck formulation of the diffusion equation.
The differential dWi is a Wiener process [23] and is given by

dW =
√
dtN(0, 1), (7)

where N(0, 1) is a random number drawn from a normal
(Gaussian) distribution with zero mean and unit variance.

There are two ways to solve Fokker–Planck equations in terms
of SDEs: a time-forward and a time-backward approach. For each
of these approaches, the set of SDEs that are equivalent to the
Fokker–Planck equation changes. For the case of solar modula-
tion in the heliosphere (the main topic of study in this work), the
particle intensity is usually only calculated at a small number of
phase-space positions, e.g. an energy spectrum or intensities along
a spacecraft trajectory. For these applications, the time-backward
approach is the most effective, while, if global particle intensities
are calculated, the time-forward approach could bemore effective.

In order to find a time-backward SDE expression for Parker’s trans-
port equation, Eq. (1) must be cast into the corresponding time-
backward Kolmogorov equation (see [25] for a detailed discussion
regarding the time-forward and time-backward equations)
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∂t

=

k
i=1

a(x, E, t)i
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∂xi∂xj  
diffusion

, (8)

where a(x, E, t)i represents drift (again, referring to first-order
terms) and C(x, E, t)i,j the diffusion tensor. Note the factor 1/2 in
front of the diffusion terms. This factor arises in the formal deriva-
tion of the diffusion equation [26] but is frequently found to be in-
cluded in the diffusion tensor. It can be shown that the diffusion
tensor C and the volatility b are related as

C = bbT , (9)

where T indicates the transpose of b.
Applying the transformations to Eq. (1) using spherical coordi-

nates one obtains a set of three stochastic differential equations
and one ordinary differential equation which is equivalent to the
original Fokker–Planck equation:

dr = ards + brr · dWr + brϑ · dWϑ + brφ · dWφ (10)

dϑ = aϑds + bϑϑ · dWϑ + bϑφ · dWφ (11)

dφ = aφds + bφφ · dWφ (12)

dE = aEds. (13)

Note that the change in the particle’s energy does not explicitly
contain a random process, but could if momentum diffusion, for
example, was included into the Parker equation. The derivation of
the coefficients above is discussed in detail by [27] and references
therein.

Themost straightforwardway to solve SDEs on a computer is to
apply the Euler–Maruyama scheme [23] to a discretized version of
the relevant set of SDEs, which, for the one-dimensional case reads

xt+1 = xt + at1t + bt1Wt , (14)

where 1t is the time increment and 1Wt =
√

1tN(0, 1) ≈ dWt .
This numerical scheme is first-order accurate in time [28].

The solution of Eq. (14), therefore constitutes a trajectory in
phase-space following the temporal evolution of a phase-space
density element (an ensemble of real particles)—referred to as a
pseudo-particle. Because of the statistical properties of theWiener
process, a large number of these pseudo-particle paths must be
integrated and averaged in order to obtain a probability distri-
bution and thereby also the actual particle intensity (see the
next section). A graphical illustration showing the differences be-
tween the time-forward and time-backward integration is shown
in Fig. 1. The left panel shows the model boundaries (discussed
in more detail in the next section): Galactic particles originate
uniformly from the heliopause, while the inner boundary is reflec-
tive. We are interested in calculating the intensity at an observa-
tional point (the black square), e.g. at Earth’s position. The middle
panel shows how time-forward integration could be implemented:
a large number of pseudo-particles (weighted with the boundary
condition) are released uniformly at the heliopause and then prop-
agate throughout the model domain until a temporal integration
boundary is reached. In the time-backward formulation (the right
panel), the pseudo-particles are released from the observational
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