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a b s t r a c t

We derive and implement the strain derivatives of the total energy of solids, i.e., the analytic stress tensor
components, in an all-electron, numeric atom-centered orbital based density-functional formalism.
We account for contributions that arise in the semi-local approximation (LDA/GGA) as well as in the
generalized Kohn–Sham case, in which a fraction of exact exchange (hybrid functionals) is included. In
this work, we discuss the details of the implementation including the numerical corrections for sparse
integrations grids which allow to produce accurate results. We validate the implementation for a variety
of test cases by comparing to strain derivatives performed via finite differences. Additionally, we include
the detailed definition of the overlapping atom-centered integration formalismused in thiswork to obtain
total energies and their derivatives.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Density-functional theory (DFT) enjoys high popularity as an
ab initio formalism to compute the ground state electron density
and energy of molecules, clusters, and solids. As formalized in the
Hellmann–Feynman theorem and generalized in the 2n + 1 the-
orem [1], the so-called atomic forces, i.e., the derivatives of the
Born–Oppenheimer potential-energy surface with respect to the
nuclear coordinates, can be derived as analytical expressions. Care
must be taken since correction terms can arise, e.g., Pulay terms [2]
if the basis functions move with the atoms. The atomic forces en-
able efficient DFT-based structure optimization algorithms that
allow to determine the local minima of the potential-energy sur-
face associated with the electronic ground state. By these means,
one can identify the stable and metastable geometries at zero
Kelvin, which in turn provide the founding for further compu-
tational investigations, e.g., via first-principles atomistic thermo-
dynamics [3]. To apply such structure optimization methods to
materials modeled as periodic solids, one must additionally take
into account the lattice degrees of freedom and the respective
derivatives of the energy with respect to strain, i.e., the stress.

The strain tensor ε describes the elastic deformation of a crystal
relative to a reference state. This corresponds to a transformation
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of all real space coordinates and its derived quantities, e.g., the
atomic positions R

Rα(ε) =


β

(δαβ + εαβ)Rβ(0) (1)

with respect to the zero strain reference R(0). α, β = 1, 2, 3 de-
note the Cartesian components. In general, Greek indices stand for
the three Cartesian components throughout this paper. For a unit
cell with volume V , the stress tensor σ is defined [4,5] as the first
order change in the total (Born–Oppenheimer) energy of the unit
cell Etot under a symmetrical, infinitesimal strain deformation ε

σλµ =
1
V
∂Etot
∂ελµ


ε=0
. (2)

Given that only symmetric strain deformations are used in the def-
inition of the stress tensor, the stress tensor is symmetric as well
and thus consists of six independent entries. Although this defi-
nition is unique, a practical implementation of these derivatives
depends very much on the numerical details chosen for the DFT
formalism, e.g., on the basis set type.

Nielsen and Martin [6,7] first demonstrated that the stress can
indeed be efficiently and accurately assessed in a DFT framework.
For this purpose, they employed a plane wave basis set expansion
(together with norm-conserving pseudopotentials) and the local-
density approximation. Later works extended the stress tensor im-
plementation for plane waves to ultra-soft pseudopotentials [8]
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including the contributions of the generalized orthonormality con-
dition. Thonhauser and coworkers [9] as well as Nagasako and
coworkers [5] summarized the strain derivatives for the linearized
augmented planewavemethod. The former derived a surface term
due to the discontinuities at the boundaries between muffin tins
and interstitial region and the latter presented a correction because
the number of plane waves in the interstitial region changes under
strain. Kresse and coworkers [10] as well as Torrent and cowork-
ers [11] derived the stress tensor for the projector augmented-
wave (PAW) method and discussed the additional terms arising
from the compensating charges of the PAW method. Kudin and
coworkers [12] discussed the implementation of the stress ten-
sor for Gaussian-type orbitals (GTO) while evaluating the electro-
static contributions entirely in real space using a fast multipole
method. Doll and coworkers [13,14] employed GTOs, too, includ-
ing the strain derivatives for Hartree–Fock calculations. Further-
more, Soler and coworkers [15] presented the strain derivatives for
numeric atom-centered orbitals with norm-conserving pseudopo-
tentials calculating the electrostatics by fast Fourier transforms.

In this paper, we derive the strain derivatives, i.e., the ana-
lytic stress tensor components, in an all-electron, numeric atom-
centered orbital based density-functional formalism. We discuss
our implementation of these formulae in the electronic struc-
ture theory code FHI-aims [16] including strain derivatives of hy-
brid functionals and the van der Waals (vdW) correction scheme
of Tkatchenko and Scheffler [17]. Hereby, all electrostatic contri-
butions are evaluated in real space using a multipole expansion
including Ewald’s method [18] together with corrections. Further-
more, we account for Pulay terms due to our atom-centered basis
functions.

The remainder of the paper is organized as follows: In Section 2,
the general mathematical formalism of DFT and of the analytical
stress tensor are presented. Section 3 gives a detailed derivation
of the various contributions that arise in a numeric atom-
centered orbital based DFT formalism. Details of the numerical
implementation are discussed in Section 4. Finally in Section 5, we
investigate the accuracy and the efficiency of our implementation
by comparing our analytical stress tensor components to strain
derivatives computed via finite differences. We compare these
two quantities for a wide range of systems that range from
metals via semiconductors and insulators to organic crystals to
demonstrate the general validity of our implementation across the
periodic table. Furthermore, we also study the behavior of our
implementation for different exchange–correlation functionals,
basis set sizes, system sizes, and integration grids to investigate
the convergence behavior of the analytical stress tensor. The
computational performance of our implementation is discussed in
Section 5 as well. For the sake of completeness, Section 6 gives an
overview on how the stress tensor can be used to optimize the
unit cell of a crystal (i.e., finding energy minima) under external
pressure.

2. Formalism

2.1. Total energy in DFT

In Kohn–Sham (KS) DFT, the total energy of a system at given
nuclear configuration reads [19,20]

Etot = EKS[n0] + Enuc (3)

with the ground state electron density n0, the nuclear–nuclear
energy Enuc, and the Kohn–Sham energy functional

EKS[n] = Ts[n] + Eext[n] + EH[n] + Exc[n]. (4)

Ts is the kinetic energy functional of non-interacting electrons,
Eext the electron–nuclear energy, EH the Hartree energy, and Exc

the exchange–correlation energy functional. For clarity, we avoid
an explicitly spin-polarized notation, a formal generalization to
collinear (scalar) spin-DFT is straightforward and in fact included
in the implementation. Also, it is important to note that the
formally correct separation of the electrostatic interactions in Enuc,
Eext, and EH is computationally not possible in periodic systems, as
discussed in more detail in Section 3.4.

The ground state electron density for fixed nuclear coordinates
is obtained by solving the variational equation for the electron
density n,

δ


EKS[n] − µ


dr n(r)− Ne


= 0, (5)

with the chemical potential µ = δEKS/δn and the number of elec-
trons Ne. This yields the Kohn–Sham single particle equation [20],

ĥKS|ψi⟩ = ϵi|ψi⟩, (6)

the solution of which yields the Kohn–Sham orbitals ψi and the
corresponding eigenvalues ϵi. The electron density is

n(r) =


i

fi|ψi(r)|2, (7)

in which fi denotes the occupation number of the orbitals. Further-
more,

ĥKS = t̂s + v̂ext + v̂H[n] + v̂xc[n] (8)

is the Kohn–Sham Hamiltonian. t̂s is the kinetic operator, v̂ext the
electron–nuclear potential, v̂H the Hartree potential, and v̂xc the
exchange–correlation potential.

In practice, Eq. (6) is solved by expanding the Kohn–Sham
orbitals ψi in a given basis set

ψi(r) =


j

cijϕj(r) (9)

with the expansion coefficients cij and the basis functions ϕj(r),
which leads to a generalized eigenvalue problem of the form

j

⟨ϕi|ĥKS|ϕj⟩cjl = ϵl


j

⟨ϕi|ϕj⟩cjl. (10)

Here, ⟨.|.⟩ denotes the usual bra–ket notation for the inner product
in Hilbert space (integral in real space). In the case of FHI-aims,
the basis functions are real-valued atom-centered orbitals, i.e., they
depend on the position of the atoms, and the basis set expansion
takes the following explicit form

ψi(r) =


j,J

cijϕj(r − RJ). (11)

The sum runs over all atoms J and basis functions j which are as-
sociated with atom J , and RJ denotes the position of atom J . Ac-
cordingly, the density is a function of the expansion coefficients
and thus Eq. (5) translates into a minimization of EKS with respect
to the expansion coefficients under the constraint of orthonormal-
ized orbitals,

EKS[n0] = min
{cij}


EKS −


i

fiϵi

⟨ψi|ψi⟩ − 1


. (12)

2.2. Fundamental formulae for strain derivatives

2.2.1. Properties of strain derivatives
The total energy derivative in Eq. (2) can be written as

∂Etot
∂ελµ


ε=0

=


i

∂Etot(ui)

∂ui

∂ui

∂ελµ


ε=0

, (13)
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