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Unphysical self-forces resulting from the particle-mesh coupling occur when ensemble Monte Carlo
simulations of semiconductor devices use an unstructured mesh to describe device geometry. We report
on the development of a correction to the driving electric field on arbitrary meshes and show that self-
forces can be virtually eliminated on a finite element mesh at a small additional computational cost.
The developed methodology is included into a self-consistent 3D finite element Monte Carlo device
simulator. We show the efficiency of the method simulating an isolated particle and obtaining kinetic
energy conservation down to a magnitude of 10~'° meV. The methodology is later applied to a FinFET
simulation to show what impact can be expected from the self-forces using traditional electric field
interpolation strategies. We find that for a large enough ensemble of particles, the impact of self-forces
on the final Ip-Vg is almost negligible.
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1. Introduction

Monte Carlo (MC) methods have been widely used to simulate
carrier transport in semiconductor devices [1-3]. As semiconduc-
tor devices are shrunk into deep nanoscale dimensions in order
to boost their performance, the carrier transport becomes highly
non-equilibrium requiring advanced physically based simulation
models. The self-consistent ensemble MC is one of such methods,
providing a detailed insight into transport and an accurate predic-
tion of current characteristics of nanoscale transistors [4,5].

Novel non-planar multi-gate transistor architectures [6] such
as FinFETs are replacing conventional bulk transistors during the
further scaling into nanometre dimensions [7,8]. Their 3D geom-
etry exhibits non-uniform shapes created by the fabrication pro-
cess [4,9,10] which leads to new serious challenges for physically
based device modelling. In order to precisely describe such fluc-
tuating device geometries, the finite element method (FEM) de-
livers unrivalled advantages. Furthermore, optimised unstructured
meshes can significantly reduce simulation time and memory re-
quirements. This is essential as in self-consistent simulations the
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Poisson equation is solved on a 3D mesh every time step in order
to update the electric field and can become the main bottleneck of
the simulation process.

However, the use of unstructured meshes in a self-consistent
ensemble MC simulation requires careful evaluation of the par-
ticle-mesh coupling to avoid unphysical self-force on the parti-
cles [11,1,12]. This force is felt by particles when they are alone
in an infinite space with uniform permittivity. The origin of this
force lays in the lack of spherical symmetry in the solution of the
discrete Poisson equation for a single charge. The solution in a
discretised space is based on a fixed mesh, so the values of the
electrostatic potential are only defined on its nodes. However, the
particles can have arbitrary positions (within the numerical pre-
cision of the computer). If a proper interpolation function is not
used, the force exerted on the particle by itself can be different from
zero and even become comparable to other sources of electrostatic
forces in the device (other particles, ionised impurities, etc.).

The impact of self-forces in semiconductor device particle sim-
ulations has been extensively studied in the past[1,12] and various
methods have been proposed to minimise them. However, most of
these works have achieved a satisfactory result only for orthogonal
meshes [12]. From a mathematical point of view, self-forces have
been proven to be identically zero for uniform orthogonal meshes if
the charge assignment and the force interpolation schemes are the
same [1]. However, it must be pointed out that this is not a neces-
sary condition as shown in [12]. In real devices, we have boundary
conditions and material inhomogeneities, so the force on a parti-
cle which is alone in the device does not have to be zero. However,
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although the lack of spatial accuracy to resolve the effect of this in-
homogeneities will also lead to incorrect forces on the particle, this
could be, in principle, avoided by the use of a finer mesh, whereas
the impact of self-force cannot.

Even though MC device simulators using tetrahedral elements
have been presented in the past [4,5], to our best knowledge, the
problem of the self-forces has been seldom considered [12,3]. In
this work, we present a methodology to evaluate and suppress the
self-forces in a finite element (FE) MC device simulator based on
tetrahedral elements [5]. We first study the impact of the self-force
on a single particle. Later, we show the impact of the self-forces on
the drive current of a 10.7 nm gate length SOI FinFET at a low drain
bias because the self-force has a larger impact in these conditions.

2. Methodology

Standard methods to eliminate the self-force are based on the
assumption of availability of the electric field in the nodes of the
mesh [1,12]. In this case, it can be proven that under certain sym-
metry conditions it is possible to obtain zero self-force if the inter-
polation function for the electric field and the charge assignment
operator are consistent [13,1]. These type of schemes are momen-
tum conserving, but they do not conserve the total energy of the
particles. The energy conservation can be associated to a consis-
tent determination of the potential energy and the force on the
particle, i.e., F = —VU. However, this condition is not satisfied for
the momentum conserving scheme. This can lead to an artificial in-
crease/decrease of the energy of the particles. Usually, this change
in the total energy of the particle can be kept small by adjusting
the time step. Other family of schemes, energy conserving [13-15],
conserve the total energy of the particles, but the total momen-
tum of the particles is not conserved. There are two sources for this
non-conservation of the total momentum. On the one hand, it is the
self-force, which will lead to an artificial exchange between kinetic
and potential energies (and therefore an artificial change in their
momentum). This can also be seen as particles having an unphysi-
cal contribution to their own potential energy. On the other hand,
the lack of symmetry in the systems discretised on unstrgcturgd
meshes leads to non-symmetric forces between particles (F; # Fj
for two particles i, j) and therefore loss of the conservation of the
total momentum. In the following, we will focus on the first com-
ponent only, the self-force.

The potential energy of a particle p, U, in a semiconductor
device can be decomposed, in general, as

Up = Uother particles + Ubackground charge + Uapplied bias
+ Uimage charges s ( 1 )

which includes the contribution of particle p only through the
image (polarisation) charges induced in the contacts or material
boundaries. However, when we solve the Poisson equation, we in-
clude all the charges and then this potential is used in the calcula-
tion of the potential energy which is, in turn, used to calculate the
driving force. In the absence of material discontinuities it can be
written as:

Up = Qpl//(rp) = Uself + Uother particles + UbackgTound charge

+ Uapplied bias + Uimage charges (2)

where g, is the charge of particle p and ¥ (7,) is the electrostatic
potential in the position of the particle p, Fp. Eq. (2) includes the
contribution of p’s own Coulomb energy, Usey. Since we are solving
numerically, there is no divergence in the Coulomb energy in the
position of the particles. During the simulation, the driving force
on a particle is then given by

ﬁ(Fp) = _VUIJ = _QPVI/I(F[J) = I?self + [_‘:other particles

+ Fbackgmund charge + Fapplied bias + Fimage charges s (3)

which, therefore, includes a contribution from the particle’s own
Coulomb energy, the self-force Fse,f. A numerical method which
preserves the spherical symmetry of the Coulomb potential energy
around the particle will produce zero self-force since the gradient
of this contribution will be zero. In this case, the contribution to the
force, Fyer, will disappear and the method will be momentum con-
serving. However, the contribution to the potential energy, U,
is still present and therefore the potential energy of the particle
cannot be properly calculated. On the other hand, an energy con-
serving method, which verifies F = —VU exactly, will conserve
the total energy of the particle but both the potential energy and
the force in the position of p will, in general, have a contribution
from p itself.

The only way to properly account for the potential energy and
force on a particle p would be removing the contribution of p from
the fields used in the calculations. This can be accomplished in two
ways. The first way would be the solution of one different Poisson
equation for each particle with modified boundary conditions to
account for the image charges [16,17]. However, this is computa-
tionally very expensive in self-consistent simulations as it would
multiply the cost of the simulation by the number of particles in
the domain, typically several thousands in semiconductor device
simulations. The alternative is to find a correction to the potential
energy and force which removes the contribution from the parti-
cle for which we are calculating the energy/force. As most semi-
conductor device Monte Carlo simulators use the finite difference
method and momentum conserving schemes, there have not been
attempts at using correction forces with unstructured meshes to
the best of our knowledge. Since the environment of every node
will be different depending on the mesh, it is not possible to find a
general correction which can be applied in every case and a specific
corrections for each mesh and node is required.

For a given mesh and for every node, we calculate the reference
electrostatic potential for a unit charge assigned to the node p, "k:

ViYPR = §@F -7, (4)
k
YPRlygp = ==, (5)
[T — 1pl

where 042p is the external boundary of the domain, with Dirichlet
boundary conditions applied. This reference potential mimics the
potential that the particle would create in an infinite domain
without any other charge and with the boundary condition
limg_7, o0 ¥PR = 0. The potential energy in this case should
be zero and, therefore, any energy in 7, will be the self-potential
energy of this particle, Up sy = ¥PR(7,). Similarly, any force in 7,
will be the self-force, Foy = —VyPR(F,).

To calculate the reference potential, we use the Ritz-Galerkin
approximation and apply the FEM based on tetrahedral elements
with piecewise linear base functions 6; [18]. We then obtain the
following weak formulation of Eq. (4) [19]:

K K
- Z/ 8(F —T,)0:d82
=179

> oyt / V6 - V6,ds$2
2
= —6,(F,) = =8, VYi=1,...,K, (6)

j=1
where K is the number of nodes in the mesh and we have used the
fact that p is in the position of a node.

During the simulation, we solve the Poisson equation to obtain
the electrostatic potential at every time step:

V(E®VYF) = qurS(F—?p) + p(), (7)
p

Vlaap, = Vo + Vext.i» (8)
Vnwth =0, (9)
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