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a b s t r a c t

The magneto-optical properties of simple hexagonal graphite exhibit rich beating oscillations, which are
dominated by the field strength and photon energy. The former has a strong effect on the intensity, the
energy range of the beating and the number of groups, and the latter modulates the total group numbers
of the oscillation structures. The single-particle and collective excitations are simultaneously presented in
the magnetoreflectance spectra and can be precisely distinguished. For the loss function and reflectance,
the beating pattern of the first group displays stronger intensities and broader energy range than other
groups. Simple hexagonal graphite possesses unique magneto-optical characteristics that can serve to
identify other bulk graphites.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphene-based materials have attracted many researchers to
investigate their physical properties due to their potential for novel
applications. The material properties demonstrate their strong
dependence on the stacking configurations [1–6], layer num-
bers [7–12], and interlayer atomic interactions [13–15]. Graphite
is composed of van der Waals coupled graphene layers [16,17].
Three prototypes of periodical stacking along the z-direction exist:
AA-stacked simple hexagonal graphite (SHG), AB-stacked Bernal
graphite (BG), and ABC-stacked rhombohedral graphite (RHG). The
graphites discovered in nature are mainly composed of BG and
RHG. Recently, SHG has been successfully synthesized in the lab-
oratory [18]. The interlayer couplings play an important role in
determining the low-energy electronic properties; thus, different
periodic stacking configurations exhibit their own unique char-
acteristics. It is known that the neighboring electronic states
congregate and form the Landau subbands (LSs) along kz in a
perpendicular uniform magnetic field B = B0z. The magneto-
electronic properties demonstrate very interesting phenomena,
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e.g., the anisotropy of low-energy electronic structures [16,19–21],
the de Haas-van Alphen effect [22,23], quantum Hall effect
[24–27]. In this work, we mainly focus on obtaining the magneto-
optical properties of SHG by means of evaluating the dielectric
function ε(ω, B0). Comparisons with BG and RHG are also made.

The LSs of graphites presentmany important features. SHG pos-
sesses very strong kz-dependent energy dispersions with a broad
bandwidth about 1 eV, and each LS can be described by a simple re-
lationship with kz [19,25]. Many LSs cross the Fermi level (EF = 0)
[19,28]. Moreover, the excitations related to the densely low-lying
LSs own wide energy ranges which can overlap for different op-
tical transition channels. On the contrary, RHG exhibits weak kz-
dependent dispersions with a narrow band width (∼10meV) [21].
Only one LS crosses EF , and there is no coexisting energies for dif-
ferent optical excitations. The LS can be characterized by the ap-
proximate solution [29]. The energy dispersion of BG has a band
width of ∼0.2 eV, which lies between that of SHG and RHG, and
two LSs cross EF [30,31]. The low-lying LSs are complex and can-
not be easily described by kz . The characteristics of LSs would be
reflected in the magneto-optical spectra.

The magneto-optical properties are closely associated with the
stacking configurations of graphites [28,31–33]. The low-energy
magneto-optical absorption spectrum of SHG is dominated by
intraband and interband optical excitations which induce a multi-
channel threshold peak, several two-channel peaks, and many
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double-peak structures [28]. In the magneto-optical absorption
spectra of BG, the prominent peaks originate from the interband
excitations at both the K and H points. The peaks associated with
the K point display double-peak structures [20,30]. Moreover, the
field evolution of the absorption lines for the K -point type shows
an approximately linear dependence, while the dependence of
the H point is square-root like [20,30,34]. The magnetoreflectance
R(ω, B0) spectra of BG displays irregular oscillations [35,36]. Up to
now, no theoretical calculations and experimental measurements
for the magneto-optical absorption or reflection of RHG have been
performed.

The magneto-optical properties are evaluated based on the
Peierls tight-binding model, which can be exactly diagonalized
even with the inclusions of field-induced Peierls phases and im-
portant atomic interactions in the Hamiltonian [28,31,37]. This
study shows that the beating patterns of the dielectric function
can be formed mainly owing to the strong overlap of different
optical transition channels in a wide frequency range. Such beat-
ing patterns are also exhibited in the higher-frequency absorption
spectrum, loss function, and reflectance. The single-particle and
collective excitations can be precisely identified, respectively,
based on the shoulders (peaks) and dips of specific structures in the
magnetoreflectance spectra. The regular beating magneto-optical
spectra can be controlled by the field strength and the photon en-
ergy, which provide a theoretical basis for future experiments to
clarify the optical responses of the graphite configurations.

The generalized tight-binding model deserves a closer exami-
nation in numerical calculations.Wedeveloped thismodel to study
the magneto-electronic andmagneto-optical properties by the ex-
act diagonalization method. In studying the magneto-electronic
properties, the earlier work can only cope with eigenvalues and
eigenfunctions at strong magnetic field strength [38] because
the Hamiltonian matrix gets too large as the field strength de-
creases. For example, this matrix is 40000× 40000 for monolayer
graphene at 7.9 T. By means of rearranging the tight-binding func-
tions, it is possible to transform the huge matrix into a band-like
one. Therefore, the eigenvalues and the wave functions can be ef-
ficiently solved at weaker field strength (∼1 T) [37]. In this work,
the magneto-optical absorption spectra, which are determined by
three large matrices due to the Hamiltonian, the initial state and
the final state, can be obtained by using the localized features of
the magnetic wave functions. The PC clusters are sufficient in cal-
culating numerical data. The acquired features of LS spectra and
the reliable characterization of the LS wave functions provide a
guideline for other physical properties, such as Coulomb excita-
tions and transport properties. As for the discussion of the opti-
cal properties in our previously published works, the generalized
tight-binding method has been successfully applied to investigate
the magneto-optical absorption spectra of few-layer graphenes.
The optical selection rules are well defined through the detailed
analysis on thewave functions. It is also applicable to bulk graphite
with layers stacked in any sequence. Furthermore, the generalized
tight-bindingmodel can be used in the cases of spatiallymodulated
fields and combined magnetic and electric fields.

2. Methods

For calculation purposes, the geometric structure of simple
hexagonal graphite is regarded as a stacking sequence of infinite
layers of graphene with an AA-stacked configuration alongz. All
honeycomb structures in SHG have the same projections on the
x–y plane. The interlayer distance is Ic = 3.50 Å [18] and the C–C
bond length is b′

= 1.42 Å. A primitive unit cell consists of two
atoms. The associated hopping integrals γi’s taken into account are
the one intralayer atomic interaction (γ0 = 2.519 eV) and three

interlayer atomic interactions (γ1 = 0.361 eV; γ2 = 0.013 eV;
γ3 = −0.032 eV) [15].

When SHG is subjected to a B0z, the path integral of the vector
potential induces a periodical Peierls phase (details in Ref. [19]).
The phase term of the associated period is inversely proportional
to the magnetic flux (Φ = 3

√
3b′2B0/2) through a hexagon. To

satisfy the integrity of the primitive cell, the ratio RB = Φ0/Φ
(Φ0 = hc/e flux quantum) has to be a positive integer. As a result,
the extended rectangular unit cell has 4RB carbon atoms. The π-
electronic Hamiltonian built from the 4RB tight-binding functions
is a 4RB × 4RB Hermitian matrix. To solve this huge matrix prob-
lem, one can convert the Hamiltonianmatrix into a band-like form
by rearranging the tight-binding functions [19,29,31]. Both eigen-
value Ec,v and eigenfunction Ψ c,v are efficiently obtained, even for
a small magnetic field. The superscripts c and v, respectively, rep-
resent the conduction and valence bands.

The main features of the electronic properties can be directly
manifested by optical excitations. As materials absorb photons,
electrons are excited from occupied states to unoccupied states.
Within the relaxation-time approximation [39], the transverse di-
electric function at zero temperature is expressed as

ε(ω, B0) = ϵ0 −
e2
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where ϵ0 = 2.4 is the background dielectric constant [40]. ωhh′(n,
n′

; k) = Eh′

(n′, k)−Eh(n, k) is the optical excitation energywhich
comes from the intraband (c → c; v → v) or interband excita-
tions (v → c); Γ (= 3.5 meV) is the broadening parameter due
to the deexcitation mechanisms. In these optical excitations, the
momentum of the photons is nearly zero and thus the excitations
can be regarded as a vertical transition between two LSs. The initial
and final states have the same wavevector, i.e., △kx = 0, △ky = 0,

and △kz = 0 [28]. The velocity matrix element Dm =
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is evaluated within the gradient approximation

[39,41]. As |Dm|
2 /ω2

hh′ is set to be a constant, the imaginary part of
ε(ω, B0) is simply the joint density of states DJ(ω, B0). The evalua-
tion of ε(ω, B0) can be employed to study the absorption spectrum,
loss function, and reflectance.

3. Results and discussion

The perpendicular magnetic field causes the cyclotron motion
in the x–y plane; therefore, the Landau levels lie on the kx–ky plane
and the LSs alongkz . The energy dispersions of the LSs along the
K–H line (0 ≤ kz(π/Ic) ≤ 1) exhibit a strong dependence on kz ,
as shown in Fig. 1. Based on the node structure of the Landau wave
functions, the quantum number nc(nv) for each conduction (va-
lence) LS can be identified by the total number of nodes [28]. The
LSs with nc and those with nv are asymmetric about EF = 0 be-
cause of the interlayer atomic interactions. In optical excitations,
electrons are excited from occupied LSs into unoccupied LSs. For
the sake of convenience, the excitations between two LSs with
quantum numbers nc,v and mc,v are represented as [nc(v),mc(v)

]

and (nv,mc) for intraband and interband excitations, respectively.
Moreover, the wave functions of occupied and unoccupied states
offer important insights into the possible excitation channels. Since
the LS wave functions of SHG are similar to those of monolayer
graphene, the same selection rule |△n| = |mc,v

− nc,v| = 1 applies
[28,42,43].
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