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a b s t r a c t

A method for determining the elastic properties using the minimum image method (MIM) is proposed
and tested on a model system of particles interacting by the Lennard-Jones (LJ) potential. The elastic con-
stants of the LJ system are determined in the thermodynamic limit, N → ∞, using the Monte Carlo (MC)
method in the NVT and NPT ensembles. The simulation results show that when determining the elastic
constants, the contribution of long-range interactions cannot be ignored, because that would lead to erro-
neous results. In addition, the simulations have revealed that the inclusion of further interactions of each
particle with all its minimum image neighbors even in case of small systems leads to results which are
very close to the values of elastic constants in the thermodynamic limit. This enables one for a quick and
accurate estimation of the elastic constants using very small samples.

© 2015 Published by Elsevier B.V.

1. Introduction

Knowledge of elastic properties of materials around us is im-
portant not only from the scientific point of view but also for prac-
tical applications. In solids, the elastic properties can be described
by the elastic constants which determine the relationship between
strain and stress. Research on the elastic constants is carried out
at different levels from microscopic to macroscopic, using both
the theoretical and experimental methods. A special place in the
study of elastic properties is taken by computer simulations, which
can relatively easy supply data in areas where the experiments
are either difficult or even cannot be performed, e.g. at extreme
temperatures or pressures, or can be used to analyze hypothetical
models or materials with unusual properties. The pioneering sim-
ulation work by Squire, Holt, and Hoover [1] was related to Monte
Carlo calculations of the elastic properties of solid argon using the
Lennard-Jones interatomic pair potential:
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where σ is the particle diameter, ϵ sets the energy scale, and rij is
the distance between particles i and j. Since that time a number
of simulation methods to calculate the elastic properties of atomic
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systems were established [2–11]. In the current work a simple ex-
tension for basic methods of calculation of elastic constants is pro-
posed and tested on Lennard-Jones system.

The LJ potential plays a significant role in the computer simula-
tions, not only because of its simplicity and elegance, butmainly for
the fact that it is a model potential which allows to describe some
physical properties of noble gases and various properties of sim-
ple liquids [12]. It is also a reference potential used to test variety
of new theories and computational methods [13]. Typically, new
methods to calculate the elastic constants are tested on the system
of particles interacting via LJ potential only between nearest neigh-
bors [14,3,15,16,6,17,8,9] so called a nearest-neighbor Lennard-
Jones (LJnn) potential. From the point of view of conducting
simulation, it is a well defined and very comfortable model, be-
cause a researcher does not have to take into account the long-
range interactions. However, in real systems one can rarely afford
such a simplification. There are few works devoted to the calcu-
lations of elastic properties of the LJ system including the further
neighborhood [1,18,19], because such simulations are much more
time consuming than those taking into account only the nearest
neighbors or those with some fixed length of truncation of the
LJ potential. Many different simplifications of the LJ potential can
be found in the literature, starting from the aforementioned LJnn
model, by the systems, wherein the particles interact with some
cut potential [20] until a cut and sifted potential [21]. The last one
has the advantage in molecular dynamics (MD) simulations that
there is no discontinuity in the potential or the force. It is not sur-
prising that the system in each of these approximations will have
different thermodynamic properties.
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An accounting of the long-range interactions in computer sim-
ulations is usually quite expensive. For example, when considering
the interactions of ions or dipoles one cannot avoid either counting
the Ewald sum [22–24], or applying the particle–meshmethod [25]
or application of themethodofminimal image [26,27]. However, to
obtain correct results for the energy and pressure in the case of the
LJ potential system, the long-range corrections are often used. The
long-range or tail corrections are computed by following formulas:
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where U∗
= U/ϵ is the dimensionless energy, p∗

= pσ 3/ϵ is the
dimensionless pressure, rc is the cutoff radius of the LJ potential,
ρ∗

= (N/V )σ 3 is the reduced density,N is the number of particles,
and V is the volume of the system. In the case of the elastic con-
stants the use of analogous corrections does not lead to correct re-
sults. So, the effect of long-range interactions cannot be neglected.

The aim of this work is twofold. First, a simple, efficient and
fairly accurate method of determining the elastic properties is in-
troduced, which correctly takes into account the long-range inter-
actions. This method, using the convention of minimum images,
has been tested inNVT andNPT ensembles. Second, the elastic con-
stants of the system of particles interacting via LJ potential are de-
termined in the limit N → ∞.

2. Elastic constants and basic methods of their calculations

The elastic constants at a fixed temperature are defined as fol-
lows:
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where F is the Helmholtz free energy, V is the volume of refer-
ence state, η is the strain tensor. In general, taking into account
the symmetry of the strain tensor, the tensor of elastic moduli has
21 independent components [28], however, the crystal symmetry
usually implies a significant reduction of their number. The face-
centered cubic structure (only the crystal with such structure will
be considered in this paper) has only three independent elastic
constants, which – using the Voigt notation – can be written as fol-
lows: C1111 = C11, C1122 = C12, and C1212 = C44. The free energy
change corresponding to a thermodynamically reversible elastic
deformation of cubic crystals at zero pressure [28] has the form:
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2.1. Equilibrium fluctuation formula (NVT ensemble)

For a central force system, the elastic constants are determined
from the analysis of the fluctuations in the positions of the particles
in thermodynamic equilibrium using the fluctuation formulas
[1,7]:
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where φ is interatomic potential of interaction, the symbol ⟨· · ·⟩

designates configurational averages, δij is the Kronecker delta,
∆xijα = xα(i) − xα(j), and r = |∆xijα|

2. In the case of noncentral in-
teractions, the situation ismore complicated and other approaches
have to be used, because in general it is impossible to express the
elastic energy as a function of the strain tensor [7].

2.2. Strain fluctuation formula (NPT ensemble)

At constant pressure, it is convenient to use the free enthalpy
(Gibbs free energy) expansion:
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where the volume Vp of the system corresponds to the equilib-
rium state at p. The elastic constants Bij at pressure p are in the
following relation with elastic constants at zero pressure Cij: B11 =

C11−p, B12 = C12+p, and B44 = C44−p. In this case, the strain fluc-
tuation formula proposed by Parrinello–Rahman [2] and modified
by Ray [4,5] is widely used:
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Herein the strain tensor is defined as:
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where h is the matrix that describes the size and shape of the sim-
ulation box, matrix ⟨h⟩ describes reference box, h̃ is the transpose

matrix, and

h̃
−1

is the inverse of the transpose of ⟨h⟩. It is con-
venient to choose the matrices ⟨h⟩ and h as symmetric. In this pa-
per amodified version of the Parrinello–Rahmanmethodwas used
[29,30].

3. Evaluationof the elastic constantsusing theminimumimage
method (MIM)

Since the contribution to the elastic constants from long-range
interactions cannot be ignored or easily corrected using eqs. anal-
ogous to those applicable in the case of the system pressure or
energy (2)–(3), a simple extension of the two mentioned above
methods is proposed here. It bases on using the minimum image
method (MIM) that was previously used for calculations of the en-
ergy and pressure in systems with long-range interactions [26,27].

3.1. Minimum image method in the NVT ensemble

The simulations in the canonical ensemble are performed by
the standard (Metropolis) Monte Carlo scheme [31]. However the
fluctuation formula (6) is applied not only for the particles in
the simulation box, but also for their images. The calculations are
performed not only for the ith particle with coordinates (xi, yi, zi)
but also for its 26 images, so are taken in account the particles with
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