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Continuous time random walks with heavy tailed distributions of waiting times and jump lengths lead
to situations when evolution of a probability density of finding a particle at given point at given time
is described by the bi-fractional Smoluchowski-Fokker-Planck equation. A power-law distribution of
waiting times results in very general properties of a survival probability which in turn can be used
to estimate eigenvalues of some fractional operators. Here, the problem of numerical estimation of

the smallest eigenvalues is discussed for the two generic problems: escape from a finite interval and
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the Kramers problem of escape from a potential well. We discuss both how to numerically obtain the
(effective) smallest eigenvalue of the problem, and how it can be used in numerically assessing other
important characteristics of the processes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, it is assumed that diffusion is a memoryless pro-
cess with Markovian increments leading to a Gaussian distribution
of displacements. This is the natural consequence of the central
limit theorem, stating that a sum of many independent bounded
increments (or, generally, increments characterized by finite vari-
ance) converges in distribution to a Gaussian. Both assumptions
underlying normal diffusion can be violated. Increments can follow
a heavy tailed distribution, subsequent increments do not need to
be independent, or the waiting time distribution between the steps
or jumps can be characterized by the diverging mean. The most in-
teresting situation takes place when both these assumptions are
violated simultaneously.

There is a growing experimental evidence demonstrating oc-
currence of more general, heavy-tailed fluctuations. In particu-
lar, recorded examples include: diffusion in the energy space [1],
exciton and charge transport in polymers under conformational
motion [2], spectral analysis of paleoclimatic data [3,4], two-
dimensional rotating flows [5]. In addition to examples show-
ing more general jumps, there are also examples demonstrating
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slowing down of diffusion [6,7] due to anomalously long trapping
events or other causes, see [8] for a short review of different mod-
els.

More general types of diffusion require special treatment and
description which significantly departs from Markovian and/or
Gaussian paradigm. Systems revealing anomalously long jumps
or anomalously long trapping events no longer can be described
by the standard diffusion equation. In context of anomalous dif-
fusion fractional equations naturally emerge because long jumps
lead to the fractional space derivatives while long rests result in
the fractional time derivatives, see Section 2. The boundary-value
problems for fractional diffusion equations are usually more com-
plicated to solve than their standard diffusion analogs. The main
difficulty is connected with formulating the correct boundary con-
ditions for equations involving fractional space derivative. Spacial
fractional derivatives originate due to long (non-local) jumps and
discontinuous trajectories. The discontinuity of the trajectory leads
to the necessity to take into account that, for example, an absorbing
boundary at x = xg, for the initial condition confined to x < xg, im-
plies that all particles attempting to cross it from left to right get
absorbed “on the flight”. This can be done either by considering
non-local additional condition implying vanishing of the concen-
tration for all x > xp [9], or by modifying the fractional space
operator in such a way, that all particles attempting to cross the
boundary essentially land on it [10,11]. Both variants make an al-
ready complex analytics of fractional equations even more compli-
cated.
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Analytical solutions of fractional equations can be constructed
in the simplest cases only [12-14], indicating strong necessity for
development of numerical methods. These methods are of two
general types: the first group focuses on the direct solving of frac-
tional equations [15-23] while the second group approximates
underlying stochastic process [24-26] whose probability density
evolves according to the particular fractional equation. Solutions of
the fractional equation are then reconstructed as histograms of this
stochastic process. On the one hand, stochastic methods require
generation of large number of realizations of stochastic processes.
On the other hand, these methods are general, robust and relatively
easy to implement because boundary conditions on a single tra-
jectory level are straightforward. The accuracy of approximation
is controlled both by the number of repetitions and time step of
integration.

One of the typical methods of solving partial differential equa-
tion is separation of variables. This method can be extended to the
fractional kinetic which can be described by a fractional diffusion
equation. The applicability of factorization requires knowledge of
eigenfunctions of spatial and temporal parts of the fractional op-
erators. The knowledge of eigenfunctions (along with initial con-
ditions) allows for construction of exact solutions of fractional
equations. The construction of the spatial eigenfunctions how-
ever may pose considerable problems since usually there is only a
limited or no knowledge about eigenfunctions and eigenvalues
[27-30]. Moreover, presence of boundaries makes the complex
problem even more sophisticated. On the other hand there are sit-
uations when the exact knowledge of all eigenfunctions is not nec-
essary for obtaining the characteristics of interest, which might
include the asymptotic behavior of probability densities and some
other characteristics derived from the probability densities like:
quantiles, survival probabilities, etc. In some situations the knowl-
edge of temporal eigenfunctions and eigenvalues (determined by
the spatial part of the operator) is sufficient to calculate system’s
characteristics. Semi-analytical methods provide a possibility to
approximate eigenvalues which usually are not accessible analyt-
ically. More precisely, using (full) numerical solution it is possible
to estimate the smallest (effective) eigenvalue by fitting procedure
because asymptotic solution is dominated by the smallest eigen-
value. Next, using this estimate one can construct approximate so-
lution based on the smallest (effective) eigenvalue. Finally, from
an approximate solution required characteristics can be easily cal-
culated. Here, semi-analytical methods are used to estimate small-
est (effective) eigenvalues for two generic cases: escape from finite
intervals and fractional Kramers problem. The estimated small-
est (effective) eigenvalues are then used to approximate some
characteristics of the escape process. The models considered are
described in the next section. Results section presents the main
outcome of numerical analysis. The paper is closed with summary
and conclusions.

2. Models

We use semi-analytical methods in order to quantify some
properties of systems which in the absence of boundaries would
be described by the bi-fractional diffusion equation [31,32,25]:
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The bi-fractional Smoluchowski-Fokker-Planck equation describes
evolution of the probability density of finding a particle at time ¢t
in the vicinity of x. We restrict ourselves to the escape from finite
intervals [33,34] and fractional Kramers problem [35,36].
In Eq. (1), ng_V denotes the Riemann-Liouville fractional

derivative oD; " = 2D, " defined by the relation

1.3 /fdt, ft) @)
r'(v)at J, (t —tH1-v

oD (x, 1) =

and % stands for the Riesz-Weil fractional derivative with the

Fourier transform

o
¥ [afo«)] = K ). (3)
alx|*

Within the complementary continuous time random walk frame-
work, the fractional time derivative captures anomalously long
waiting times (p(t) o t~®“+Y with 0 < v < 1) while the frac-
tional space derivative describes anomalously long jumps (p(x) o
[x|~@*D with 0 < a < 2). The same version of the fractional
Smoluchowski-Fokker-Planck equation (1) corresponds to the sit-
uation when jumps are generated from «-stable densities [37-40]
which in the symmetric case have the required p(x) oc |x|~@*+D
asymptotics. We refer to v as the subdiffusion parameter and to «
as the stability index. For « = 2, the a-stable density is equiv-
alent to the Gaussian distribution. In such a case, the fractional
Riesz-Weil derivative is replaced by the standard second order
derivative.

The fractional space derivative, see Eq. (3), originates due to
non-local long jumps. Consequently, for @ < 2, the trajectories of
the process whose evolution of the probability density is described
by Eq. (1), are discontinuous. Discontinuity of trajectories requires
special treatment because boundary conditions cannot be imple-
mented in a typical point-wise manner. More precisely, the particle
instead of hitting the boundary can jump over it. The two possibil-
ities to resolve the difficulty were discussed above; here we use
the first approach which can be easily implemented numerically
on a single trajectory level, i.e. we use the subordination methods
which are general and robust to exact values of parameters.

We are specially interested in the problem of first escape from
the initial domain of motion which is restricted by absorbing
boundaries. In particular, in the case of escape from finite intervals
the motion of the particle is restricted to the [—L, L] domain; the
whole exterior of the [—L, L] interval is absorbing. In addition to
the escape from the finite intervals, we study the escape problem
from the double well potential V(x) = —ax?/2 + bx*/4 (Kramers
problem). Initially, we assume that the random walker is located
in the middle of the interval (escape from finite intervals) or in
the left potential well (fractional Kramers problem), see Fig. 1.
For the escape from a finite interval, the process is restricted by
boundaries located at &L. For the Kramers problem, states of the
process are associated with minima of the double well potential,
which are separated by the boundary located at the maximum of
the potential.

The properties of first escape can be characterized by the first
passage time density and the survival probability. From Eq. (1) the
first passage time density can be obtained [41,42]

d
f© =f(tho,0) =~ / p(x, tlxo, 0)d, ()
2

where 2 is domain of the motion and p(x, t|xg, 0) is the solution
of Eq. (1) subject to the appropriate boundary and initial condi-
tions [9,27]. The first passage time density is connected to the sur-
vival probability

S(t) = / p(x, t|xg, 0)dx (5)
2

by the relation

d
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The survival probability S(t) is the probability that at time t a ran-
dom walker is still in the [—L, L] interval or on the left hand side
the potential barrier, see Fig. 1. The survival probability S(t) is re-
lated to the cumulative density of the first passage time # (t) =

Jy fwdu =1—5(t).
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