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a b s t r a c t

In this article, the authors proposed anumerical schemebased onCrank–Nicolson finite difference scheme
and Haar wavelets to find numerical solutions of different types of second order hyperbolic telegraph
equations (i.e. telegraph equation with constant coefficients, with variable coefficients, and singular
telegraph equation). This work is an extension of the scheme by Jiwari (2012) for hyperbolic equations.
The use of Haar basis function is made with multiresolution analysis to get the fast and accurate results
on collocation points. The convergence of the proposed scheme is proved by doing its error analysis. Four
test examples are considered to demonstrate the accuracy and efficiency of the scheme. The scheme is
easy and very suitable for computer implementation and provides numerical solutions close to the exact
solutions and available in the literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This article is dedicated to study the numerical solutions of
the second order hyperbolic telegraph type equation. Telegraph
equation models an infinitesimal piece of telegraph wire as an
electrical circuit. Telegraph equation describes the voltage and
current in a double conductor with distance x and time t . The
one-space dimension second-order linear hyperbolic telegraph
equation is defined as

∂2u(x, t)
∂t2

+ 2α(x, t)
∂u(x, t)

∂t
+ β2u(x, t)

= A(x, t)
∂2u(x, t)

∂x2
+ g(x, t), (x, t) ∈ [0, 1] × [0, T ] , (1)

with initial and boundary conditions

u(x, 0) = g1(x),
∂u
∂t

(x, 0) = g2(x), (2)

u(0, t) = φ1(t), u(1, t) = φ2(t), t ≥ 0 (3)

where g, g1, g2, φ1, φ2 are known functions and the function u is
unknown. For α > 0, β = 0 Eq. (1) represents a damped wave
equation, and if α > β > 0, it is known as telegraph equation. For
the detailed study of Eq. (1),we refer [1–28] and references therein.
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As we know a small telegraph wire and the long transmission
line have similar characteristics. Thus, it is adequate to model an
infinite small piece of telegraph wire to represent a transmission
line over distance. Generally, two conductors are not perfectly
insulated because of the current flow and potential difference
between them. Consequently, it is a formidable task to perfectly
analyse the system in order to achieve the maximum output and
minimum error. To obtain maximum output in communication
systems, it is necessary to determine the project power and signal
failure in the system. To determine such type of failures it is
essential to formulate a technique which ensures a maximum
output. In terms of voltage and current, a mathematical derivation
for the telegraph equation has been investigated in [1]. In signal
analysis, telegraph equation is usually used for transmission and
propagation of electrical signals. Telegraph equation also has
applications in other fields like microwaves and radio frequency
fields [3].

In recent years, much attention has been given in the litera-
ture to the development of stable methods for the numerical so-
lutions of the second-order hyperbolic equations with constant
coefficients [4,5,23]. These higher order difference methods and
explicit difference methods are conditionally stable. Mohanty [7]
demonstrated a new unconditionally stable technique to solve
the linear one dimensional hyperbolic equation (1). In [9], au-
thors found an approximate solution of telegraph equation by
using interpolating scaling function, and in [11], Dehghan et al.
combined a higher-order compact finite difference scheme of
fourth order for discretizing spatial derivative of linear hyper-
bolic equation and collocation method for the time component
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to find the numerical solutions of one-dimensional linear hyper-
bolic equation. Dehghan et al. proposed some numerical methods
for telegraph equation by using Chebyshev cardinal function [12],
Differential quadrature method [13,21] and some other numer-
ical methods in [19,20]. Hosseini et al. proposed a competitive
numerical scheme based on Rothe’s approximation for time dis-
cretization and Wavelet-Galerkin for the spatial discretization has
been discussed in [14]. Xie et al. [28] proposed fourth-order com-
pact difference and alternating direction implicit schemes for tele-
graph equation. Also in [8], authors developed a numerical scheme
to solve the one-dimensional hyperbolic telegraph equation using
alternating group explicit method. There is sufficient literature
available on telegraph equation with constant coefficients but the
literature for telegraph equation with variable coefficients is very
sparse [10,22]. In this article, we design a numerical scheme using
finite difference schemeandHaarwaveletmethod to examine tele-
graph equation with constant coefficients as well as with variable
coefficients and singular coefficients.

As we know partial differential equations are used to describe
the physical phenomena which are often difficult to solve analyt-
ically, therefore numerical methods have to be used. Numerical
schemes based on Haar wavelet are efficient methods for solving
such type of partial differential equations since it can track the
singularity and increase the local resolution of the grid by adding
higher resolutions. In smoother regions, the results can be calcu-
lated at lower resolutions. Wavelets have many excellent proper-
ties such as orthogonality, compact support, exact representation
of polynomials to a certain degree and flexibility to represent func-
tions at different levels of resolution. In numerical analysis Haar
wavelet is popular due to its property of localization. Generally,
writing up the operational matrices is quite tedious whenwewant
to perform the calculation at high resolution. Haar wavelet oper-
ational matrix of integration method helps us to easily solve high
order partial differential equation and nonlinear problems at high
resolution. In this study, we describe howwavelets may be used in
slightly different manner for the discretization of telegraph equa-
tion with Crank–Nicolson finite difference scheme. After the time
discretization by Crank–Nicolson scheme, the system of ordinary
differential equations is solved by projecting the solution onto the
wavelet space to produce a system of algebraic equations; that can
be solved by iterative methods. The approximation properties of
the scaling function of the multiresolution analysis [18] provide
computational efficiency and accuracy of numerical solutions of
partial differential equations.

A short introduction of the Haar wavelets and its applications
can be found in [15–18]. But, the essential shortcoming of Haar
wavelet is: it is not continuous, that is derivatives do not exist
at the point of discontinuity. Therefore it is not possible to apply
the Haar wavelet directly for solution of any differential equation.
There are two possibilities of ending this stand-still situation. First,
the piecewise constant Haar functions can be regularized by inter-
polation spline but interpolation spline generates the complexity
in the solution and the simplicity of Haar wavelet is lost. The other
possibility is to expand all functions into Haar series. In this pa-
perwe have applied the technique of Haar series by approximating
the highest derivative appearing in the differential equation. The
other derivatives are obtained through integrations of this Haar se-
ries. Since the differentiation of Haar wavelet always results in im-
pulse functions which should be avoided, the integration of Haar
wavelet is preferred because it can be expanded into Haar series
with the Haar coefficient matrix P on collocation points. After in-
tegrating the Haar function, we get the Haar matrices P1 and P2 of
2M × 2M order. These matrices are then used to solve the given
telegraph equation. The main idea of this composite scheme is to
convert a differential equation into a systemof algebraic equations,
and then to discretize the algebraic equations at collocation points.

The benefits of Haar wavelet transform are sparse matrix of rep-
resentation, possibility of implementation of fast algorithms, more
accuracy and less computation time. Error analysis of the proposed
method is also carried out and it is shown that the method is con-
vergent. The accuracy of the proposed scheme is demonstrated on
four test problems. The results of numerical experiments are com-
pared with analytical solutions and other existing methods to con-
firm the better accuracy of the proposed scheme.

In order to elucidate our arguments in a synchronized manner,
we have summed up the paper under following sections: in
Section 2, we describe the semi-discretization of telegraph
equation by Crank–Nicolson scheme. Section 3 deals with Haar
wavelet method for spatial discretization. We present the error
analysis for the proposed scheme for solving telegraph equation
in Section 4. In Section 5, we have solved four numerical examples
and compared the composite Haar wavelet method with existing
method discussed in [10] and analytic solutions of the differential
equations via 3-dimensional and contour plots. The conclusion of
the theory developed in the article is given in Section 6.

2. Semi-discretization of telegraph equation

We discretized the time derivative terms of the given equation
using theCrank–Nicolson finite difference scheme. Crank–Nicolson
finite difference scheme is a combination of forward Euler’s
method at jth and the backward Euler method at (j + 1)th level.

Applying forward Euler method on Eq. (1), we get
uj+1 − 2uj + uj−1

∆t2


+ 2α


uj+1 − uj−1

2∆t


= A(uxx)j − β2(u )j + g(x, tj), 0 ≤ j ≤ N − 1. (4)

Similarly backward Euler method at (j + 1)th level in time
direction on Eq. (1) gives

uj+1 − 2uj + uj−1

∆t2


+ 2α


uj+1 − uj−1

2∆t


= A(uxx)j+1 − β2(u)j+1 + g(x, tj+1), 0 ≤ j ≤ N − 1. (5)

Adding Eqs. (4) and (5), we obtain
uj+1 − 2uj + uj−1

∆t2


+ 2α


uj+1 − uj−1

2∆t


= A


(uxx)j + (uxx)j+1

2


− β2


(u )j + (u)j+1

2


+


g(x, tj) + g(x, tj+1)

2


, 0 ≤ j ≤ N − 1 (6)

with initial and the boundary conditions

u0 = g1(x), (u0)t = g2(x), (7)

uj+1(0) = φ1(tj+1), uj+1(1) = φ2(tj+1),

j = 0, 1, . . . ,N − 1.
(8)

On simplifying Eq. (6) we get

2(uj+1 − 2uj + uj−1) + 2α∆t(uj+1 − uj−1)

= ∆t2A((uxx)j + (uxx)j+1) − ∆t2β2((u)j + (u)j+1)

+ ∆t2(g(x, tj) + g(x, tj+1)), 0 ≤ j ≤ N − 1, (9)

where uj+1 is the solution of the above differential equation (6) at
(j + 1)th time step. For the solution of the system of second order
linear ordinary differential equation (9) we arrange as;

(2 + 2α∆t + ∆t2β2)(u)j+1 − ∆ t2A(uxx)j+1

= (4 − ∆t2β2)(u)j + (−2 + 2α∆t)uj−1 + ∆t2A(uxx)j

+ ∆t2g(x, tj) + ∆t2g(x, tj+1), 0 ≤ j ≤ N − 1, (10)
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