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a b s t r a c t

We consider the problem of parallelizing electronic structure computations in plane-wave Density Func-
tional Theory. Because of the limited scalability of Fourier transforms, parallelism has to be found at the
eigensolver level. We show how a recently proposed algorithm based on Chebyshev polynomials can
scale into the tens of thousands of processors, outperforming block conjugate gradient algorithms for
large computations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Kohn–Sham Density Functional Theory is an efficient way to
solve the Schrödinger equation for quantum systems [1,2]. By
modelling the correlation between N electrons via exchange–
correlation functionals, it leads to the Kohn–Sham system, math-
ematically formulated as a nonlinear eigenvalue problem. This
problem can be discretized and solved numerically, and the result
of this computation allows the determination of physical proper-
ties of interest via higher-level processing such as geometry opti-
mization, molecular dynamics or response-function computation.
Density Functional Theory (DFT) codes can be classified accord-
ing to the discretization scheme used to represent wavefunctions
(plane waves, localized basis functions, finite differences, etc.) and
the treatment of core electrons (all-electron computations, pseu-
dopotentials, etc.).We focus on theABINIT software [3],which uses
a plane-wave basis and either norm-conserving pseudopotentials
or the Projector Augmented-Wave (PAW) approach [4,5].

The bottleneck of most simulations is the computation of the
electronic ground state. This is done by a self-consistent cycle
whose inner step is the solution of a linear eigenvalue problem.
This step has to be implemented efficiently, taking into account
the specificities of the problem at hand, which rules out the use
of generic black-box solvers. Furthermore, the growing need for
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parallelization constrains the choice of the eigensolver. Indeed, one
specificity of plane-waveDFT as opposed to real-space codes is that
Fourier transforms do not scale beyond about 100 processors: ef-
fective parallelization requires eigensolvers that are able to com-
pute several Hamiltonian applications in parallel.

The historic eigensolver used in plane-wave DFT, the conjugate
gradient scheme of Refs. [6,7], is inherently sequential, although
there are attempts at parallelization by omitting orthogonaliza-
tions [8]. Several methods work on blocks of eigenvectors and are
more suited for parallelization, such as the residual vector mini-
mization — direct inversion in the iterative subspace (RMM-DIIS)
scheme [7], and block Davidson algorithms [9], including the lo-
cally optimal block preconditioned conjugate gradient (LOBPCG)
algorithm [10], implemented in ABINIT [11].

Parallel implementations of plane-wave DFT codes include
Quantum Espresso [12], VASP [7], QBOX [13] or CASTEP [14]. The
scalability of these codes is mainly limited by orthogonalizations
and the Rayleigh–Ritz step, a dense matrix diagonalization, which
is hard to parallelize efficiently, even using state-of-the-art li-
braries such as ELPA [15] or Elemental [16]. The Rayleigh–Ritz step
usually becomes the bottleneck when using more than a thousand
processors.

There are two main ways to decrease the cost of this step. One
is to use it as rarely as possible. This usually means applying the
Hamiltonian more than one time to each vector before applying
the Rayleigh–Ritz procedure, in order to speed up convergence.
The other is getting rid of it entirely. This requires the independent
computation of parts of the spectrum, as in the methods of spec-
trum slicing [17] or of contour integrals [18,19]. These approaches
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effectively solve an interior eigenvalue problem,which is consider-
ably harder than the original exterior one. The result is that a large
number of Hamiltonian applications is needed, to obtain a high-
degree polynomial or to solve linear systems.

While these spectrumdecomposition techniqueswill surely be-
come the dominant methods for exascale computing, we address
the current generation of supercomputers, on which the decrease
in the costs of the Rayleigh–Ritz step is notworth the great increase
in the number of Hamiltonian applications. We therefore focus in
this paper on the method of Chebyshev filtering, which aims to
limit the number of Rayleigh–Ritz steps by applying polynomials
of the Hamiltonian to each vector. It can be seen as an accelerated
subspace iteration, and dates back to the RITZIT code in 1970 [20].
It has been proposed for use inDFT in Refs. [21,22], and has recently
been adopted by several groups [23,24].

The contribution of this paper is twofold. First, we show how to
adapt the Chebyshev filtering algorithm of Ref. [21] in the context
of generalized eigenproblems, here due to the PAW formalism.
By exploiting the particular nature of the PAW overlap matrix (a
low-rank perturbation of the identity), we are able to invert it
efficiently. Second, we compare the Chebyshev filtering algorithm
with CG and LOBPCG, both in terms of convergence and scalability.

2. The eigenvalue problem

2.1. The operators

First, we define some relevant variables. For a system of Natoms
atoms in a box, we solve the Kohn–Sham equations in a plane-
wave basis. This basis is defined by the set of all planewaveswhose
kinetic energy is less than a threshold Ecut. This yields a sphere of
Npw plane waves, upon which the wavefunctions are discretized.

We consider a system where Nbands bands are sought. For a
simple ground state computation, Nbands represents the number of
states occupied by valence electrons of the Natoms atoms. For more
sophisticated analysis such as Many-Body Perturbation Theory
(MBPT), the computation of empty states is necessary, and Nbands
can be significantly higher. It is also convenient to speed up
convergence of ground state computations to usemore bands than
strictly necessary.

To account for the core electrons, we use pseudopotentials.
ABINIT implements both norm-conserving pseudopotentials and
the Projector Augmented-Wave (PAW) method. For the purposes
of this paper, the main difference is the presence of an overlap
matrix in the PAW case, leading to a generalized eigenvalue
problem. We will assume in the rest of this paper that we use
the PAW method: norm-conserving pseudopotentials follow as a
special case.

For simplicity of notation, we consider in this paper the case
where periodicity is not taken explicitly into account, and the
wavefunctionswill be assumed to be real. The following discussion
extends to the periodic case by sampling of the Brillouin zone,
provided that we consider complex eigenproblems, with the
necessary adjustments.

The Kohn–Sham equations for the electronic wavefunctionsψn
are

Hψn = λnSψn, (1)

where H is the Hamiltonian, and S the overlap matrix arising from
the PAWmethod (S = I with norm-conserving pseudopotentials).
H and S areNpw×Npw Hermitianmatrices (although they are never
formed explicitly), andΨ is aNpw×Nbands matrix ofwavefunctions.
The Hamiltonian operator depends self-consistently on the
wavefunctions Ψ . It can be written in the form

H = K + Vloc + Vnonloc. (2)
The kinetic energy operator K is, in our plane wave basis, a sim-

ple diagonal matrix. The local operator Vloc = Vext + VH + VXC is a

multiplication in real space by a potential determined from atomic
data and the wavefunctions Ψ . It can therefore be computed ef-
ficiently using a pair of inverse and direct FFTs. The nonlocal op-
erator Vnonloc and the overlap matrix S depend on the atomic data
used. For both PAW method and norm-conserving pseudopoten-
tials, we introduce a set of nlmn projectors per atom, where nlmn is
the number of projectors used to model the core electrons of each
atom, and usually varies between 1 and 40 according to the atom
and pseudopotential type. Therefore, for a homogeneous system
of Natoms atoms we use a total of Nprojs = nlmnNatoms projectors. We
have Nprojs ≪ Npw, but Nprojs is comparable to Nbands.

We gather formally these projectors in a Npw × Nprojs matrix P .
The non-local operator Vnonloc is computed as

Vnonloc = PDVPT . (3)

Similarly, the overlap matrix in the PAW formalism is

S = I + PDSPT . (4)

Thematrices DS and DV do not couple the different atoms in the
system: they are block-diagonal. They can be precomputed from
atomic data. The matrix DV additionally depends self-consistently
on the wavefunctions Ψ .

Therefore, for a single band ψ , the process of computing Hψ
and Sψ can be decomposed as follows:

Input: a wavefunction ψ
Output: Hψ , Sψ
◦ Compute Kψ by a simple scaling
◦ Apply an inverse FFT to ψ to compute its real-space
representation, multiply by Vloc,
and apply a FFT to get Vlocψ
◦ Compute the Nprojs projections pψ = PTψ
Apply the block-diagonal matrices DV and DS to pψ
Compute the contributions PDVpψ and PDSpψ to the
nonlocal and overlap operator
◦ Assemble Hψ = Kψ + Vlocψ + PDVpψ
◦ Assemble Sψ = ψ + PDSpψ

Algorithm 1: Computation of Hψ, Sψ

The total cost of this operation is O(Npw logNpw+NpwNprojs). As
Npw and Nprojs both scale with the number of atoms Natoms, the cost
of computing the non-local operator dominates for large systems.
However,Npw is usuallymuch greater thanNprojs, and the prefactor
involved in computing FFTs is much greater than the one involved
in computing the simple matrix products PTψ and Ppψ (which
can be efficiently implemented as a level-3 BLAS operation). The
FFT and non-local operator costs are usually of the same order of
magnitude for systems up to about 50 atoms.

2.2. Solving the eigenvalue problem: conjugate gradient

The historical algorithm used to compute the Nbands first eigen-
vectors of (1) in the framework of plane-wave DFT is the conjugate
gradient algorithm, described in [6,7]. It is mathematically based
on the following variational characterization of the n-th eigenvec-
tor of the eigenproblem Hψ = λSψ:

ψn = argmin
⟨ψi, Sψ⟩=δi,n, i=1,...,Npw

⟨ψ,Hψ⟩ .

The conjugate gradient method of Refs. [6,7] consists of mini-
mizing this functional by a projected conjugate gradient method.
Note that, because of the constraints, this is a nonlinear conju-
gate gradient problem, to which classical (linear) results cannot be
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