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a b s t r a c t

We provide details of the first implementation of a non-linear conjugate gradient method for Landau and
Coulomb gauge fixing with Fourier acceleration. We find clear improvement over the Fourier accelerated
steepest descent method, with the average time taken for the algorithm to converge to a fixed, high
accuracy, being reduced by a factor of 2 to 4.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Conjugate gradient (CG) methods (first used to solve linear
equations [1] and later generalised for non-linear, non-quadratic
functions [2,3]) are a technique to solve unconstrained local min-
imisation problems. Numerically these methods can be imple-
mented cheaply because they are iterative and converge in a finite
number of steps. They are also often considered computationally
faster than the steepest descent method [4]. We illustrate how fix-
ing to the smooth, Landau and Coulomb gauges in the context of
lattice field theory can be achieved by using the method of conju-
gate gradients.

Fixing the gauge is a prescription for removing redundant de-
grees of freedom of the gauge field in a continuum quantum field
theory. Common choices are the Landau ∂µAµ(x) = 0 and Coulomb
∂iAi(x) = 0 gauges (where Greek indices run over all dimensions
and Roman over the spatial and the A’s are the gauge fields of our
theory). Fixing the gauge (while not necessary for many lattice
measurements) is often required for the direct matching of lattice
simulations to continuum perturbation theory.

Measurements of lattice Green’s functions in strongly coupled,
Nd-dimensional, SU(Nc) theories have to be performedwith a fixed
gauge and are often computed in Landau gauge. Landau gauge
Green’s functions are vital for the non-perturbative renormalisa-
tion of important physical quantities such as the QCD Kaon bag
parameter BK [5,6] and can also be used for the measurement of
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the QCD strong coupling αs [7]. Coulomb gauge fixing is more gen-
erally applicable to lattice theorists; it is used in methods such as
gauge-fixed wall source quark correlators (also often used in the
calculation of BK ), or for computing the static quark potential [8].
Having a fast routine to fix the gauge allows for faster measure-
ments of critical physical quantities.

Lattice ‘‘links’’ transcribe the gauge fields formally by the path-
ordered matrix exponential Uµ(x) = P[eig0

 x+a
x dxµAµ(x)

] (for lattice
site ‘‘x’’, with lattice spacing a and bare coupling g0), which can be
well approximated by,

Uµ
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2
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The gauge fields are obtained by the logarithm of the links. A
common approximation [9] to the logarithm of the map U = eiA,
U ∈ SU(Nc) is what we call the ‘‘Hermitian projection’’ (where
INc×Nc is the identity matrix),
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1
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. (2)

This definition is not unique, being correct up to terms of O(A3).
Exact logarithm techniques are possible [10,11] but will not be
discussed here as they are numerically costly to implement and
less commonly used in practice.

2. Gauge fixing on a lattice

We now discuss the case of lattice Landau gauge fixing, as the
extension to Coulomb gauge should be simple. After we introduce
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the conjugate gradient procedure we then discuss our implemen-
tation for fixing to Coulomb gauge.

There are two common types of gauge fixing routines, the Los
Alamos [9] and the Cornell [12], both of which use the method of
steepest descent to minimise the functional over the gauge orbits
and not the entire gauge manifold (where V is the lattice volume),

F(U) =
1

NdNcV


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
ag0Aµ
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2
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. (3)

We focus on the Cornell method as it can be Fourier accelerated.1
For the Hermitian projection definition (Eq. (2)) of the gauge

fields, the following approximation of the functional can be used,

F(U) ≈ 1−
2
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In general, themethod of steepest descent is a technique to find
a localminimumof a function. Considering the nth iteration of such
a method, the update,

xn+1 = xn − αf ′(xn), (5)

will step towards a local minimum of the function f (x); provided
the parameter α is positive, small and if xn is close to the solution.

In direct analogy to the general procedure of Eq. (5) we first
approximate the derivative of a gauge field by,

a∆µAµ(x) =
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Thenth iteration of the lattice steepest descent Landau gauge fixing
procedure updates the links via the gauge transformation,

g(x) = e−iαa∆µag0A
(n)
µ (x),
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This procedure successively reduces a∆µag0A(n)
µ (x) towards zero,

whilst retaining the gauge invariance of the action. A local
minimum of the functional of Eq. (3) occurs when a∆µag0A(n)

µ

(x) = 0 [12].
The parameterα is again a small tuning parameter, which could

be tuned at each step but is best fixed to a near-optimal constant
value. We found setting α to 0.08 and 0.1 for Landau and Coulomb
gauge respectively to be best for the ensembles considered in this
work.

The exponential in Eq. (7) could be computed exactly using
the technique of [14], but expansion to the term linear in α and
reunitarisation is sufficient and numerically faster.

It is common to stop the gauge fixing routine once the quantity,
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reaches some small value (often Θ(n)
≈ 10−14).

2.1. Fourier acceleration

The steepest descent method of fixing to Landau gauge as out-
lined abovewas shown in [12] to suffer from critical slowing down,
meaning that the number of iterations required to converge to a
fixed accuracy grows drastically with the volume of the problem.

1 Over-relaxation techniques in combination with the Los Alamos method
similarly reduce the iteration count of a steepest descent routine [13], such
techniques are not compatible with the method presented here.

Their method to ameliorate this was to apply a re-scaling in mo-
mentum space of the eigenvalues of the (Abelian) Laplacian ∆2,

g(x) = e
−iαF̃

p2Max
Vp2

Fa∆µag0A
(n)
µ (x)

, (9)

where F and F̃ are forward and backward fast Fourier transforms
(FFTs) respectively, and the factor of 1

V is for the FFT normalisation.

In practice, it is best if the quantities p2Max
Vp2

are precomputed as a look
up table. The discretemomenta p2 have the usual lattice definition,
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with Fourier modes nµ =


−Lµ
2 , . . . ,−1, 0, 1, . . . , Lµ

2 − 1

. Lµ is

the length of the lattice in the µ direction. Special care should be
taken at the zero mode, where we set the value of p2 to 1 [12]. The
quantity p2Max = 4Nd is the maximum value of the lattice momen-
tum.

In our implementation of Fourier acceleration, the shared-
memory parallel version of the library FFTW [15] was used. The
Fourier accelerated steepest descent method will be denoted as
FASD later on in this paper.

3. The conjugate gradient method

An outline of the general approach for the non-linear
(Polyak–Ribieré [3])2 conjugate gradient method is shown in Al-
gorithm 1.

Algorithm 1 General non-linear CG
Compute the gradient direction f ′(x0)
Perform a line search for α0 s.t min(f (x0 − α0f ′(x0)))
Perform the update x1 = x0 − α0f ′(x0)
Set s0 = −f ′(x0)
n = 1
while |f ′(xn)|2 > Tolerance do

Compute the gradient f ′(xn)

Compute βn = max

0, f ′(xn)T (f ′(xn)−f ′(xn−1))

f ′(xn−1)T f ′(xn−1)


Compute conjugate direction sn = −f ′(xn)+ βnsn−1
Perform a line search for αn s.t min(f (xn + αnsn))
Update xn+1 = xn + αnsn
n = n+ 1

end while

The translation of this approach to lattice Landau gauge fixing
follows almost directly, and we call it the Fourier Accelerated
Conjugate Gradient (FACG) method, and outline it in Algorithm 2.
This algorithm should not be confused with the CGFA algorithm
of [16], which uses the CG algorithm to invert the Laplacian instead
of performing FFTs.

The approach begins with an FASD step as in Eq. (9), storing
the result of the Fourier accelerated derivative in the conjugate
direction sn(x). Once the algorithm has reached a sufficient min-
imum we are finished, otherwise we repeat the procedure gener-
ating conjugate directions weighted by the factor βn.

We choose to use a line search to approximately determine the
optimal tuning parameterαn at each iteration. To do sowe evaluate
the gauge fixing functional (Eq. (4)) for possible fixed probe values

2 We find that the Polyak–Ribieré definition of βn reduces the iteration count in
comparison to the Fletcher–Reeves.
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