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a b s t r a c t

Exponentially-fitted (EF) methods are special methods for ordinary differential equations that better
compute periodic/oscillatory solutions. Such solutions often appear in Hamiltonian systems, and in view
of this, symplectic or energy-preserving variants of EF methods have been intensively studied recently. In
these studies, the symplectic variants have been further applied to Poisson systems,while such a challenge
has not ever been done for the energy-preserving variants. In this paper, we propose an energy-preserving
EF method for Poisson systems, with special emphasis on the second- and fourth-order schemes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper,1 we consider the numerical integration of Poisson
systems of the form

ẏ = Λ(y)∇H(y), y(t0) = y0, (1)

where y ∈ Rn, Λ(y) is a skew-symmetric matrix and the dot on y
stands for the differentiation with respect to time. It is well known
that the energy (Hamiltonian) H(y) is constant along the solution,
since

Ḣ(y(t)) = ∇H(y(t))⊤ẏ(t) = ∇H(y(t))⊤Λ(y(t))∇H(y(t)) = 0,

and Poisson systems often have periodic or oscillatory solutions.
With these considerations, the aim of this paper is to construct
energy-preserving integrators specially tuned for periodic or os-
cillatory solutions.

There have been a lot of studies on energy-preserving meth-
ods, as well as symplectic methods, for Hamiltonian systems in
which the matrix Λ is independent of y (see [2–7] and references
therein). While symplectic methods have been well studied and
often produce nice numerical solutions, there are several advan-
tages of adopting energy-preserving methods. For example, it is
easier to adapt stepsize control for energy-preserving methods

∗ Tel.: +81 358416932.
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1 This work is a full version of our recent report [1] with detailed discussions. In
particular, Theorems 3 and 4 are reported in [1].

than for symplectic methods, and for chaotic dynamics symplectic
methods are occasionally unstable. The average vector field (AVF)
method [7]2

y1 = y0 + hΛ
 1

0
∇H(y0 + τ(y1 − y0)) dτ (2)

is a unified way of constructing energy-preserving integrators
for Hamiltonian systems (see also [4,6] for the discrete gradi-
ent method). The AVF method is of order two. Hairer extended
the method to higher order by introducing continuous stage
Runge–Kutta (CSRK) methods [3]. However, Poisson systems (1)
require an additional technique, due to the dependence of the ma-
trix Λ on y(t): Λ(y) and ∇H(y) should be discretised in a different
manner. The simplest second-order discretisation is given by

y1 = y0 + hΛ

y0 + y1

2

 1

0
∇H(y0 + τ(y1 − y0)) dτ , (3)

which can also be seen as an extension of the AVF method (2).
This example suggests the necessity of introducing an idea of par-
titioned methods. Cohen–Hairer [8] (see also Brugnano et al. [9])
succeeded in constructing arbitrary high-order energy-preserving
schemes for Poisson systems (1).

On the other hand, for ordinary differential equations with
periodic or oscillatory solutions, there have been a lot of research

2 In this paper, every numerical integrator is formulated as a one-step method
y0 → y1(≈ y(t0 + h)) with a constant stepsize h, since we are concerned with only
autonomous problems.
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activities. For example, trigonometric methods for second-order
ODEs and exponentially-fitted methods for first-order ODEs have
been studied in the last few decades. Among them, we focus
on exponentially-fitted (EF) methods (see [10–25] and references
therein). The idea of EFmethods is to construct numerical one-step
methods which exactly solve problems whose solution belongs to
the linear space spanned by

F = {exp(λ1t), . . . , exp(λr t)}, λi ∈ C.

Note that the function of this F are R → C whereas the solutions
of Hamiltonian or Poisson systems are vector functions. Hence the
fitting space must have n-dimensional functions.

Recently, symplectic EF methods have been developed for
Hamiltonian systems (see, e.g., [26–34]), so that the combined
methods aremore effective than standard symplecticmethods and
standard EF methods. Moreover, the methods can be (at least for-
mally) applied to Poisson systems, and in some papers above this
has been done. For both systems, numerical experiments showed
the effectiveness of themethods, though strictly speaking, for Pois-
son systems, there has been no rigorous, theoretical discussions
as far as the author understands. From the perspective of geo-
metric numerical integration, these works motivate us to consider
energy-preserving EF counterparts. The present author proposed
an energy-preserving EF method for Hamiltonian systems by in-
troducing an algebraic condition of energy-preservation in terms
of CSRKmethods [35]. Although thismethod can be simply applied
to Poisson systems like as in the symplectic versions, in this paper
wedonot take this approach since such a formal application should
obviously destroy the energy-preservation of Poisson systems, and
thus such an approach does not make good sense. Instead, in this
paper, we aim at a stronger result: namely, we give a new, rigorous
framework for constructing EF schemes which exactly inherit the
energy-preservation property of Poisson systems. When the new
method is applied to Hamiltonian systems, it reduces to the ex-
isting energy-preserving EF method. The new methods have the
advantages of both energy-preserving methods and EF methods.

The construction of the new method is based on the so called
partitioned CSRK (PCSRK) methods. We show characterisations of
energy-preservation and symmetry properties in terms of PCSRK
methods, and based on them we give the new framework. There,
the biggest difficulty is that a PCSRK method contains more
parameters than a CSRK method, and all parameters have to be
determined in terms of elementary functions. We illustrate how
this can be done taking the derivation of second- and fourth-order
schemes as our working examples.

This paper is organised as follows. In Section 2.1, we give
energy-preservation and symmetry conditions for Poisson systems
in terms of partitioned CSRK (PCSRK) methods. In Section 2.2, we
introduce the concept of EF methods by illustrating the derivation
of energy-preserving EF CSRK methods for Hamilton systems. In
Section 3, we derive second- and fourth-order energy-preserving
EF schemes. Section 4 is devoted to numerical experiments, where
we consider the Euler equation. In Section 5, we conclude this
paper.

2. Preliminaries

2.1. Characterisations of energy-preserving methods

We first summarise energy-preservation and symmetry char-
acterisations for Hamiltonian systems (i.e., Λ is a constant skew-
symmetric matrix) in terms of CSRK methods [35]. After that we
give characterisations of PCSRK methods being energy-preserving
and symmetric for Poisson systems.

We consider an s-degree CSRK method defined by

Yτ = y0 + hΛ
 1

0
Aτ ,σ ∇H(Yσ ) dσ , (4)

y1 = Y1, (5)

where Yτ (τ ∈ [0, 1]) is a polynomial in τ of degree s and satisfies
Y0 = y0, and Aτ ,σ with the assumption A0,σ = 0 is a polynomial in
τ and σ .

Theorem 1 ([35]). A CSRK method solving Hamiltonian systems is
energy-preserving if ∂

∂τ
Aτ ,σ is symmetric.3

In fact, coefficient polynomials Aτ ,σ derived in [3] satisfy this
condition. This theorem also indicates that Aτ ,σ is polynomial of
degree s and s−1 with respect to τ and σ , respectively. Symmetry
condition is also written in terms of the coefficient polynomial.

Theorem 2 ([3]). A CSRK method is symmetric if

A1−τ ,1−σ + Aτ ,σ = A1,σ .

Next, let us consider Poisson systems (the following character-
isation was already pointed out in our recent report [35], but we
here add a proof). We consider an s-degree PCSRKmethod defined
by

Yτ = y0 + h
s

j=1

 1

0
Ai,τ ,j,σ Λ(Wj)∇H(Yσ ) dσ , (6)

Wi = z0 + h
s

j=1

 1

0

Ai,τ ,j,σ Λ(Wj)∇H(Yσ ) dσ (i = 1, . . . , s), (7)

y1 = y0 + h
s

i=1

 1

0
Bi,τΛ(Wi)∇H(Yτ ) dτ , (8)

z1 = z0 + h
s

i=1

 1

0

Bi,τΛ(Wi)∇H(Yτ ) dτ , (9)

with y0 = w0, where

• Yτ is a polynomial in τ of degree s and satisfies Y0 = y0,
• Ai,τ ,j,σ is a polynomial in τ and σ with Ai,0,j,σ = 0,
• 0 ≤ c1 < · · · < cs ≤ 1,
• Ai,τ ,j,σ = Aci,j,σ (the notation of Aci,j,σ is defined below),
• Bj,σ =Bj,σ = A1,j,σ .

The notation Ai,τ ,j,σ depends on τ , σ ∈ [0, 1], j = 1, . . . , s and i.
In reality, it does not depend on i, but we leave it as it is because it
becomes usefulwhen considering order conditions. In other places,
we can simply understand this as Ai,τ ,j,σ = Aτ ,j,σ .

It is clear that y1 = w1 and (7) is equivalent to Zi = Wci . For
example, when s = 1, Aτ ,1,σ = τ and c1 = 1/2, the PCSRKmethod
reduces to (3). As mentioned in [8], these methods are consistent
with the partitioned system of differential equations

ẏ = Λ(w)∇H(y), y(t0) = y0,
ẇ = Λ(w)∇H(y), z(t0) = z0,

whose solutions satisfy y(t) = w(t) if y0 = w0.

Theorem 3. A PCSRK method solving Poisson systems is energy-
preserving if ∂

∂τ
Ai,τ ,j,σ is symmetric for all j = 1, . . . , s.

3 In this paper, a polynomial f (τ , σ ) is said to be symmetric if f (τ , σ ) = f (σ , τ ).
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