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A B S T R A C T

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise
predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled
CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive
segmentation results, while avoiding the need for handcrafting features or training class-specific models.

To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a
candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the
second FCN has to classify to ∼10% and allows it to focus on more detailed segmentation of the organs and
vessels.

We utilize training and validation sets consisting of 331 clinical CT images and test our models on a com-
pletely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three ana-
tomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach
improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset.
We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a
significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to
different datasets.

Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of
medical images, achieving state-of-the-art results.1

1. Introduction

Recent advances in fully convolutional networks (FCN) have made
it feasible to train models for pixel-wise segmentation in an end-to-end
fashion (Long et al., 2015). Efficient implementations of 3D convolution
and growing GPU memory have made it possible to extent these
methods to 3D medical imaging and train networks on large amounts of
annotated volumes. One such example is the recently proposed 3D U-
Net (Çiçek et al., 2016), which applies a 3D FCN with skip connections
to sparsely annotated biomedical images. Alternative architectures for
processing volumetric images have also been successfully applied to 3D
medical image segmentation (Milletari et al., 2016; Chen et al., 2016;
Dou et al., 2017). In this work, we show that a 3D FCN, like 3D U-Net,
trained on manually labeled data of several anatomical structures

(ranging from the large organs to thin vessels) can also achieve com-
petitive segmentation results on clinical CT images, very different from
the original application of 3D U-Net using confocal microscopy images.
We furthermore compare our approach to 2D FCNs applied to the same
images.

Our approach applies 3D FCN architectures to problems of multi-
organ and vessel segmentation in a cascaded fashion. A FCN can be
trained on whole 3D CT scans. However, because of the high imbalance
between background and foreground voxels (organs, vessels, etc.) the
network will concentrate on differentiating the foreground from the
background voxels in order to minimize the loss function used for
training. While this enables the FCN to roughly segment the organs, it
causes particularly smaller organs (like the pancreas or gallbladder) and
vessels to suffer from inaccuracies around their boundaries.
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To overcome this limitation, we learn a second-stage FCN in a
cascaded manner that focuses more on the boundary regions. This is a
coarse-to-fine approach in which the first-stage FCN sees around 40% of
the voxels using only a simple automatically generated mask of the
patient's body. In the second stage, the amount of the image's voxels is
further reduced to around 10%. In effect, this step narrows down and
simplifies the search space for the FCN to decide which voxels belong to
the background or any of the foreground classes; this strategy has been
successful in many computer vision problems (Viola and Jones, 2004; Li
et al., 2016). Our approach is illustrated on a training example in Fig. 1.

1.1. Related work

Multi-organ segmentation has attracted considerable interest over
the years. Classical approaches include statistical shape models
(Cerrolaza et al., 2015; Okada et al., 2015), and/or employ techniques
based on image registration. So called multi-atlas label fusion (Rohlfing
et al., 2004; Wang et al., 2013; Iglesias and Sabuncu, 2015) has found
wide application in clinical research and practice. Approaches that
combine techniques from multi-atlas registration and machine learning
are also common place and have been successfully applied to multi-
organ segmentation in abdominal imaging (Tong et al., 2015; Oda
et al., 2016). However, a fundamental disadvantage of image registra-
tion based methods is there extensive computational cost (Iglesias and
Sabuncu, 2015). Typical methods need hours of computation time in
order to complete on single desktop machines (Wolz et al., 2013).

The recent success of deep learning based classification and seg-
mentation methods are now transitioning to applications of multi-class
segmentation in medical imaging. Recent examples of deep learning
applied to organ segmentation include (Roth et al., 2017; Zhou et al.,
2016b,a; Christ et al., 2016). Many methods focus on the segmentation
of single organs like prostate (Milletari et al., 2016), liver (Christ et al.,
2016), or pancreas (Roth et al., 2015, 2016b). Multi-organ segmenta-
tion in abdominal CT has also been approached by works like (Hu et al.,
2017; Gibson et al., 2017). Most methods are based on variants of FCNs
(Long et al., 2015) that either employ 2D convolutional layers in a slice-
by-slice fashion Roth et al. (2016b); Zhou et al. (2016b,a); Christ et al.
(2016), 2D convolutions on orthogonal (2.5D) cross-sections (Roth
et al., 2015; Prasoon et al., 2013), and 3D convolutional layers
(Milletari et al., 2016; Chen et al., 2016; Dou et al., 2017; Kamnitsas
et al., 2017). A common feature of these novel segmentation methods is
that they are able to extract the features useful for image segmentation
directly from the training imaging data, which is crucial for the success
of deep learning (LeCun et al., 2015). This avoids the need for hand-
crafting features that are suitable for detection of individual organs.

1.2. Contributions

Due to the automatic learning of image feature and in contrast to
previous approaches of multi-organ segmentation where separate
models have to be created for each organ (Oda et al., 2016; Tong et al.,
2015), our proposed method allows us to use the same model to seg-
ment very different anatomical structures such as large abdominal

organs (liver, spleen), but also vessels like arteries and veins. Further-
more, other recent FCN-based methods that applied in medical imaging
in cascaded/iterative fashion were often constrained to using rectan-
gular bounding boxes around single organs (Roth et al., 2017; Zhou
et al., 2016b) and/or performing slice-wise processing in 2D (Christ
et al., 2016; Zhou et al., 2016a).

2. Methods

Convolutional neural networks have the ability to solve challenging
classification tasks in a data-driven manner. Given a training set of
images and labels S={(In, Ln), n=1, …, N}, In denotes the raw CT
images and Ln denotes the ground truth label images. Each Ln contains
K class labels consisting of the manual segmentations of the foreground
anatomy (e.g. artery, portal vein, lungs, liver, spleen, stomach, gall-
bladder, and pancreas) and the background for each voxel in the CT
image. Our employed network architecture is the 3D extension by Çiçek
et al. (2016) of the U-Net proposed by Ronneberger et al. (2015). U-Net,
which is a type of fully convolutional network (FCN) (Long et al., 2015)
was originally proposed for bio-medical image applications, utilizes
deconvolution (Long et al., 2015) (or sometimes called up-convolutions
(Çiçek et al., 2016)) to remap the lower resolution feature maps within
the network to the denser space of the input images. This operation
allows for denser voxel-to-voxel predictions in contrast to previously
proposed sliding-window CNN methods where each voxel under the
window is classified independently making such architecture inefficient
for processing large 3D volumes. In 3D U-Net, operations such as 2D
convolution, 2D max-pooling, and 2D deconvolution are replaced by
their 3D counterparts (Çiçek et al., 2016). We use the open-source
implementation of 3D U-Net2 based on the Caffe deep learning library
(Jia et al., 2014). The 3D U-Net architecture consists of analysis and
synthesis paths with four resolution levels each. Each resolution level in
the analysis path contains two 3× 3×3 convolutional layers, each
followed by rectified linear units (ReLU) and a 2×2×2 max pooling
with strides of two in each dimension. In the synthesis path, the con-
volutional layers are replaced by deconvolutions of 2×2×2 with
strides of two in each dimension. These are followed by two 3×3×3
convolutions, each of which has a ReLU. Furthermore, 3D U-Net em-
ploys shortcut (or skip) connections from layers of equal resolution in
the analysis path to provide higher-resolution features to the synthesis
path (Çiçek et al., 2016). The last layer contains a 1×1×1 convolu-
tion that reduces the number of output channels to the number of class
labels K. This architecture has over 19 million learnable parameters and
can be trained to minimize a weighted voxel-wise cross-entropy loss
(Çiçek et al., 2016). A schematic illustration of 3D U-Net is shown in
Fig. 2.

2.1. Loss function: adjustments for multi-organ segmentation

The voxel-wise cross-entropy loss is defined as

Fig. 1. Cascaded 3D fully convolutional networks in a coarse-to-fine ap-
proach: the first stage (left) learns the generation of a candidate region for
training a second-stage FCN (right) for finer prediction. Outlined red area
shows candidate region C1 used in first stage and C2 used in second stage.
Colored regions denote ground truth annotations for training (best viewed
in color).

2 http://lmb.informatik.uni-freiburg.de/resources/opensource/unet.en.html.
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