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A B S T R A C T

Methods based on a L1/2 penalty have been utilized to solve the variable selection problem associated with the
Cox proportional hazards model. One limitation of the existing methods for survival analysis is that these ignore
the regulatory networks and pathways information. To merge prior pathway information into the analysis of
genomic data, we proposed a network-based regularization method for the L1/2 penalty and applied it to high-
dimensional survival analysis data. This method used a L1/2 regularized solver and network that penalizes a Cox
proportional hazards model with respect to the sparsity of the regression and the smoothness between the
coefficients in a given network. Based on the limited simulation studies and real breast cancer gene expression
datasets, the experimental results showed that our method achieves a higher predictive accuracy than previous
methods. Even though fewer genes were selected compared to those using previous methods, results showed
stronger associations with cancer. The results of the analysis were also validated using GeneCards.

1. Introduction

With the development of technology, thousands of gene expression
levels are able to be measured. The Cox model is essentially a regression
model commonly used statistical in medical research for exploring the
relationship between the survival of a patient and several variables. In
the study of the dependence of survival time T on covariates

= …X x x( , )p
T

1 , the Cox proportional hazards model [1] includes a ha-
zard function h t X( ) of a subject with covariates z of the form

=h t h t exp β( X) ( ) ( X)T
0 (1)

where h t( )0 is a baseline hazard function and = …β β β( , )p
T

1 is re-
gression coefficients.

Gene data has a feature of high-dimensional and small samples that
can be a solution to the p≫n problem. Moreover, only a small portion of
genes are disease-related among a vast number of genes, thus making
the genes hard to find. Based on the above data features, the traditional
methods [32] can not satisfy the features of high-dimensional gene data
[38]. On the other hand, < ≤Lq q(0 1) regularizations have sparsity
property and can prevent overfitting, so a series of regularization
methods have been proposed to improve the performance of the high-
dimensional Cox model. One of the popular directions is the Lasso
method [2,3], and alternative methods include the elastic net [4] and

Lasso network (L1 + Net) [5], which could achieve some grouping and
network effects. The series of the Lasso methods are based on the L1
penalty. However, the L1 penalty may not yield sufficiently sparsity
variable selection in real applications.

In 2010, Xu et al. proposed L1/2 regularization [6] and proved that
the L1/2 penalty is sparser than the L1 penalty in regression models.
Some researchers [7–9] have also used the L1/2 regularization in the
Cox model. However, the pathway information has been ignored in this
existing L1/2 method.

Here, we purposed a L1/2 regularization network Cox model algo-
rithm. L1/2 regularization can be taken as a representative of Lq
(0 < q < 1) regularizations and demonstrated various attractive
properties, such as unbiasedness, sparsity and oracle properties.
Furthermore, the sparsity is better than that of L1 regularization. Based
on the L1/2 penalized Cox regression model, the network structure is
used to describe the gene pathways for gene expression data. Extensive
simulation studies indicated that the effect of our method is better than
existing methods in terms of variable selection accuracy and stability.
The effectiveness of our method was further validated with real breast
cancer gene expression data. In general, our method demonstrated a
greater selectivity than the existing methods, including the ability to
select a higher level of relevant genes.
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2. Methods

2.1. Network-regularization

In this paper, we have n samples. Let = …X x x( , )p
T

1 be a vector of
covariates and = …β β β( , )p

T
1 is the regression coefficient vector of p

variables. The Cox partial log–likelihood can be written as

⎜ ⎟∑ ⎧
⎨⎩

⎛
⎝

∑ ⎞
⎠

⎫
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= −
= ∈

β δ x β x βℓ( ) log exp( )
i

n

i i
T

j R
j
T

1 i (2)

where Ri is the set of the individuals at risk at time ti.
The network-constrained estimation of the regression coefficients

[2,10,11] denoted by β̂

=β Q βˆ arg min{ ( )} (3)

where = − +Q β β P β( ) ℓ( ) ( )n
1 .

The P β( ) is the penalty function to obtain a sparsity estimate with
the structure of a given network and it can be written as

= +P β λ β λ β Lβ( ) T
1 1

2
2 (4)

where ||·||1/2 is a L1/2 norm. The tuning parameters λ1 and λ2 control the
amount of regularization for sparsity and smooth.

L1 is a popular regularization technique that was used in previous
method and it has less sparsity than Lq (0< q< 1). However, when q
lies closer to zero, Lq experiences more sparser and thus more difficult
to convergence. Some researchers have studied the properties of Lq
(0< q< 1) regularization and proved that the L1/2 regularization is
extremely important and plays a special role [6,15,16]. Therefore, the
L1/2 regularization can be expressed as Lq (0< q< 1) regularization
and also possesses unbiasedness and oracle properties [15,16]. In ge-
netic data, only a few genes are relevant to diseases; therefore, in ap-
plication, the L1/2 penalty approach would be more appropriate than L1
approach. Consequently, the L1/2 penalty was chosen in our Cox re-
gression model.

The graph structure has been represented the p-dimensional
Laplacian matrix =L l{ }ij when the network information of predictors
[12,13] is provided as follows:

=
⎧

⎨
⎩

−
= ≠

−l
if b d

d d if a b
1 a and 0

( ) and are linked with each other
0 otherwise

a

a bab 1/2

(5)

where da is the total number of links of the node i in graph theory.
Based on the works of predecessors, the net penalty can be written as:
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Li [13] earlier pointed out that the performance of the penalty
function is reduced when two negatively correlated predictors are
linked to each other. Subsequently, the adaptive Laplacian net has been
proposed [5,13] as a solution to this problem. In this situation, the
corresponding regression coefficients have different signs, so they are
not expected to be locally smooth. In order to overcome this problem,
the signs of coefficients are estimated first before adding it to the La-
placian matrix:
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The net penalty can be written as:

= =∗β L β β S LS β β S L Sβ( ) ( ) ( )T T T T T

where = =∗ ∗L l S LS{ }ab
T , with the = ∗S diag sign β( ( )) and ∗βsgn( ) is the

estimated sign of coefficients by preliminary regression analysis.

Based on Eq (5), the adaptive net penalty function can be write as:
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The penalty function can be changed to:
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Based on ≈ ∗β β βsgn( )a a a for ≈ ∗β βa a , the Eq (6) can be rewritten as:
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2.2. The coordinate descent algorithm

The coordinate descent algorithm [13,14] is an efficient method for
solving regularization models. Its basic procedure can be described as
follows: for each coefficient, the target function with respect to βi is
partially optimized with the remaining elements of β fixed at their most
recently updated values.

In previous work [14], the approximate ℓ was written by Taylor
expansion at current estimates β͠ as that
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The exact solution is
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HALF σ γ( , ) is an enhanced L1/2 thresholding operator [15,16] for the
coordinate descent algorithm.
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Thus, the algorithm is:

Step 1 Initialize β͠ .
Step 2 Compute wi and zi.
Step 3 Update β̂ using Eq (9) and set =β β̂͠ .
Step 4 Repeat steps 2–4 until convergence of β̂.

3. Results and discussion

3.1. Analyses of simulated data

The goal of this section is to evaluate the performance of our pro-
posed method in the simulation study. We simulated gene expression
data within an assumed network by works of predecessors. In model 1
and 2 [13,17,33], there were 100 networks respectively in model 1 and
2 where each has one transcription factor gene (TF) and 10 regulated
genes, thus making a total of 1100 genes. We set =w 1ij between the
TFs and their regulated genes and =w 0ij otherwise. The value of each
TF was based on standard normal distribution and the 10 regulated
gene values were generated from a conditional normal distribution as

∗N ρ x( , 0.51)TFi . A total of 100 networks were divided into 25 groups.
The correlation ρ between the regulated genes and TF in each group
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