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A B S T R A C T

In magnetic resonance imaging (MRI), the acquired images are usually not of high enough resolution due to
constraints such as long sampling times and patient comfort. High-resolution MRI images can be obtained by
super-resolution techniques, which can be grouped into two categories: single-contrast super-resolution and
multi-contrast super-resolution, where the former has no reference information, and the latter applies a high-
resolution image of another modality as a reference. In this paper, we propose a deep convolutional neural
network model, which performs single- and multi-contrast super-resolution reconstructions simultaneously.
Experimental results on synthetic and real brain MRI images show that our convolutional neural network model
outperforms state-of-the-art MRI super-resolution methods in terms of visual quality and objective quality cri-
teria such as peak signal-to-noise ratio and structural similarity.

1. Introduction

Magnetic resonance imaging (MRI) is generally considered one of
the most effective ways to provide an accurate clinical diagnosis and
pathological analysis. For certain diseases, however, the trade-off
among scanning costs, sampling time, and patient comfort often leads
to the collected MRI images being unsatisfactory with rather low re-
solution (LR), which can affect image post-processing and the con-
sequent diagnosis. Over the years, super-resolution techniques have
been extensively employed to improve the resolution of LR MRI images
[1] so that significant information about the anatomical structure is
recovered in the high-resolution (HR) images.

MRI super-resolution methods can be divided into two categories:
single-contrast super-resolution (SCSR) [2–16] and multi-contrast
super-resolution (MCSR) [17–22]. The SCSR methods aim to re-
construct a HR representation of the object from one or more LR inputs
of the same modality. Bicubic and bi-spline interpolations are two
conventional super-resolution methods in MRI practice that are widely
used due to their simplicity. However, both inevitably lead to blurred
edges and blocking artifacts. To overcome these problems, iterative
algorithms [2,4,9,10] take image priors into account (e.g., low rank,
total variation, or sparsity in a transform domain) as regularization

items and try to obtain a more targeted HR image from a single LR
image. However, when the information within a single image is very
limited, these methods do not always lead to faithful super-resolution
results. Believing better reconstruction results could be produced if
more information beyond that in a single LR image was incorporated,
more effective strategies [6–8,11–13] have been utilized to capture co-
occurring structure information for the LR and HR image patches using
extra training datasets. These methods produced promising improve-
ments in performance for MRI super-resolution reconstruction. How-
ever, they did not exploit multiple-modality information, which con-
tains data that is useful for image restoration and is often found in MRI
multi-contrast acquisitions [1,23] such as T1-weighted (T1w) and T2-
weighted (T2w) images. Utilizing this type of information could further
promote image enhancement.

By using large training datasets, super-resolution methods based on
deep convolutional neural networks (CNN) have achieved state-of-the-
art performance for natural image super-resolution [24–33]. Dong et al.
[24,25] first upscaled LR images by bicubic interpolation and trained a
three-layer CNN to estimate an end-to-end non-linear mapping between
the bicubic upscaled LR images and the corresponding HR images. Kim
et al. [26] further improved super-resolution performance by increasing
the network depth from 3 to 20 layers and adopting global residual
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learning. To speed up the reconstruction process, bicubic interpolation
was replaced by a sub-pixel convolution layer [27] or a deconvolution
layer [28]. In addition, Ledig et al. [29] introduced a generative ad-
versarial network (GAN) for single image super-resolution, which in-
cluded a generative network using a residual network (ResNet) struc-
ture [31] and a discriminative network with a perceptual loss function
instead of L2/L1 loss. Lim et al. [32] achieved superior super-resolution
performance and won the NTIRE 2017 super-resolution challenge by
expanding the model size and modifying the ResNet block to discard the
batch normalization (BN) layer [33].

Only recently have CNN-based methods been applied to MRI super-
resolution [14–16]. Oktay et al. [14] proposed a CNN dedicated for
cardiac MRI to estimate an end-to-end non-linear mapping between the
upscaled LR images and corresponding HR images to rebuild a HR 3D
volume. In other work, motion compensation for the fetal brain was
enforced by CNN architecture [15] to solve those 3D reconstruction
problems. Pham et al. [16] upscaled LR images by bicubic interpolation
and trained a three-layer CNN to recover fine brain structure details in
MRI. These methods are promising for obtaining high quality super-
resolution reconstructions for MRI images. However, the incorporation
of MRI images with different contrasts might significantly improve the
performance of super-resolution algorithms.

The MCSR methods attempt to utilize the HR image of a different
contrast (of another modality) as a reference to guide the reconstruction
process. MRI images with different contrast mechanisms provide dif-
ferent structural information about body tissues [34]. For example, the
T2w images exhibit clearer margins for many kinds of focal lesions, but
they require far more acquisition time compared with T1w images. A
compromise treatment is to generate a LR T2w image and a corre-
sponding HR T1w image with a short acquisition time and then obtain a
HR T2w image showing the details of minute topical lesions by using
MCSR methods. The effectiveness of the MCSR method depends on the
similarity between the T1w and T2w images of the edge structures in
the local patterns. By taking advantage of similar edge structures in a
different contrast image as prior information, the MCSR methods re-
construct the structural details and effectively improve the quality of SR
reconstructed image.

For example, Rousseau first proposed a patch-based multi-contrast
framework and introduced non-local similarity as the regularization
item in Ref. [17]. In Ref. [18] he reported on further investigations into
the many factors that can affect the experimental result. Next, based on
the proposed framework, a combination of image non-local similarity
with mean correction was utilized [19]. In Ref. [20], measuring simi-
larity not only by image intensity, but also by image features was
exploited. Further work in Ref. [21] tried to restore the HR image with
a sparse-coding model by considering the local manifold structures in
multi-contrast images. Recently, Zheng et al. [22] introduced the novel
image property of local-weight similarity between multi-contrast brain
images to accomplish a super-resolution reconstruction. This approach
explored the statistical information estimated from a HR reference
image to enhance the resolution of the LR input.

In this paper, we propose a novel super-resolution approach. With
training an end-to-end mapping between the LR image and its HR
counterpart, we demonstrate the potential benefit of SCSR based on
CNN architecture for MRI images. Then, by exploiting a contrasting HR
image of a different modality as a reference, a CNN-based MCSR-pro-
cessing step is proposed to further improve the quality of the re-
constructed HR image. Experimental results show that our approach
outperforms other state-of-the-art super-resolution approaches for MRI
images.

The main contributions of this work include the following: (1) we
attempt to simultaneously solve SCSR and MCSR problems by training a
CNN and show its application for brain MRI images; (2) by performing
the 2D MCSR processing, similar structural information within different
contrast images is distinguished and integrated into the super-resolu-
tion reconstruction; and (3) extensive experimental results verify our

approach to be superior to state-of-the-art super-resolution methods for
2D and 3D MRI images in terms of their peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [35].

The remainder of the paper is organized as follows: Section 2 details
our proposed algorithm, which improves the resolution of an MRI
image with the help of a HR reference image. Experiments and results
are presented in Sections 3 and 4, followed by discussions in Section 5.
Finally, Section 6 provides a summary of the work.

2. Simultaneous SCSR and MCSR based on CNN

2.1. Problem formulation

The vectorized representations of the LR image and its corre-
sponding HR image are denoted by y and x , respectively, while ∈y Rn

and ∈ >x m nR ( )m . Generally, x and y are related by a degradation
model:

= +y DHx ε (1)

where D is the down-sampling operator, H is the blur operator, and ε is
the additive noise. The aim of the SCSR method is to estimate x from y.
This is an ill-posed inverse problem because there are infinitely many
solutions to x for a given y. A common approach is to apply one or more
priors to regularize the solution. The SCSR-reconstructed image x̂ is
obtained by optimizing the following loss function:

= − +x y DHx λR xˆ arg min ( )
x 2

2
(2)

where • 2 denotes the L2 norm, the first term is a data fidelity term,
R x( ) is the regularization term that provides a certain image prior (such
as low rank, total variation, or sparsity in a transform domain), and λ is
the regularization parameter that offers a better compromise between
the two terms.

In the scenario for MCSR, there is a reference HR image with a
different contrast. The MCSR method generates a reconstructed HR
image using not only the LR image, but also the reference image. We
denote different subscripts to discriminate the different contrast MRI
images. For example, let xT w1 and xT w2 be the vectorized representations
of T1w- and T2w-MRI images, respectively. The formulation of MCSR
problem is then as follows:

= − + +x y DHx λ R x λ R x xˆ arg min ( ) ( , )T w
x

T w T w T w T w T w2 2 2 2
2

1 1 2 2 2 1 2
T w2 (3)

The first two terms in Eq. (3) are the same as those in Eq. (2). The
third term is still a regularization term and describes the structural si-
milarity between xT w1 and xT w2 , while λ2 is the regularization parameter.

In conventional SCSR and MCSR methods, the function of the reg-
ularization terms is determined by the users, and the regularization
parameters are often set through extensive experimentation. The pro-
cedure for choosing suitable regularization terms and good regular-
ization parameters can be troublesome as well as inaccurate. In addi-
tion, optimizing Eq. (2) or Eq. (3) is very time-consuming. Moreover,
SCSR and MCSR cannot be achieved simultaneously. To solve these
problems, we propose a novel deep learning-based method, which is
inspired by the great success deep learning has achieved in natural
image super-resolution and other computer-vision tasks.

2.2. Deep network for brain MRI super-resolution

As illustrated in Fig. 1, our network consists of two sub-networks: a
SCSR sub-network and a MCSR sub-network. The LR T2w image yT w2 is
first input to the SCSR sub-network and upscaled to a super-resolution
reconstructed image defined as =x F y Θˆ ( ; )SCSR SCSR T w SCSR2 , where FSCSR
is the learned end-to-end mapping with parameters ΘSCSR The re-
constructed image x̂SCSR is then further modified using the MCSR sub-
network with reference to a registered HR T1w image xT w1 :
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