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A B S T R A C T

In this work, we propose and test a new approach for non-linear kinetic parameters' estimation from dynamic
PET data. A technique is discussed, to derive an analytical closed-form expression of the compartmental model
used for kinetic parameters' evaluation, using an auxiliary parameter set, with the aim of reducing the com-
putational burden and speeding up the fitting of these complex mathematical expressions to noisy TACs.

Two alternative algorithms based on numeric calculations are considered and compared to the new proposal.
We perform a simulation study aimed at (i) assessing agreement between the proposed method and other
conventional ways of implementing compartmental model fitting, and (ii) quantifying the reduction in com-
putational time required for convergence. It results in a speed-up factor of ∼120 when compared to a fully
numeric version, or ∼38, with respect to a more conventional implementation, while converging to very similar
values for the estimated model parameters.

The proposed method is also tested on dynamic 3D PET clinical data of four control subjects. The results
obtained supported those of the simulation study, and provided input and promising perspectives for the ap-
plication of the proposed technique in clinical practice.

1. Introduction

Kinetic parameters' estimation from positron emission tomography
(PET) images can provide a greater insight into the diagnosis of several
diseases, especially those that involve metabolism, helping clinicians in
characterizing among different kinds of pathologies and severity; also,
it can assist during the follow-up of treatment response in a more
specific way than the simple evaluation of the standard uptake value at
a single time point [1].

Kinetic parameters can be estimated from a dynamic PET scan, that
consists in acquiring a sequence of 3D PET images over time, to follow
the uptake and washout of the radiotracer injected in the imaged object.
Then, pharmacokinetic analysis aims to estimate biologically relevant
kinetic parameters from the measured concentration in tissue over time,
i.e., the tissue's time activity curve (TAC).

The aforementioned pharmacokinetic analysis can be performed
using two main approaches: region-of-interest (ROI) kinetic modeling
and parametric imaging [2,3]. The ROI-based approach fits the kinetic
model to a TAC obtained averaging the values of the voxels inside a
selected ROI. Instead, parametric imaging involves the estimation of the
kinetic parameters for every voxel, thus providing a representation of

their spatial distribution: it is useful to enhance characterization of the
regional heterogeneity. However, parametric imaging is high compu-
tationally demanding, and more sensitive to noise than the ROI-based
kinetic modeling [4].

The standard approach to analyze dynamic PET scans (4D PET)
starts with the independent reconstructions of 3D PET images, acquired
in consecutive time frames, needed to perform the pharmacokinetic
analysis. Iterative reconstruction algorithms, such as the maximum
likelihood expectation maximization (MLEM) or the faster ordered-
subset expectation maximization (OSEM) methods, are commonly used,
even if the filtered back-projection (FBP) method is sometimes pre-
ferred [5,6].

The pharmacokinetic analysis of PET data provides an insight into
how the injected tracer is involved in various biological processes that
may take place inside the patient's body: blood flow, receptor occu-
pancy, and other physiological and metabolic processes. The kinetic
model theoretically describes the biology in the underlying tracer dis-
tribution, and then, the fitting operation of such a model with measured
data allows to estimate a set of parameters which are inherently related
to the processes under investigation. Modeling is typically applied to
reconstructed PET images as a post-processing step, and it can be
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considered as the actual bottleneck in the performance of parametric
imaging estimation.

In the last few years, we have to acknowledge a growing interest in
fully 4D image reconstruction techniques [7,8]. This class of re-
construction methods tries to address the problems of noise character-
ization and limited counts in dynamic emission tomography, by in-
corporating a theoretical model of the temporal behavior of the
radiotracer directly into the image reconstruction algorithm [7–10],
allowing for physiologically-meaningful constraints into the re-
construction process itself. Fully 4D direct reconstruction allows reli-
able estimation of voxel-wise kinetic parameters directly from raw data
by exploiting the same mathematical models normally used on a post-
reconstruction basis [2,3]. However, such direct approach is highly
time-consuming, especially due to the kinetic parameters' estimation
step, which needs to be performed multiple times, after each re-
construction iteration.

In this work, we present and validate a technique to derive an
analytical closed-form expression of the compartmental model used for
kinetic parameters' evaluation, using an auxiliary parameter set, with
the aim of reducing the computational burden, and thus to speed up the
step of fitting these complex mathematical expressions to raw TACs. To
evaluate if, and how much, the proposed solution succeeds in doing so,
we performed a comparison of the proposed method with other two
alternative algorithms based on numeric calculation. Also, the esti-
mated kinetic parameter values are considered, to verify that the
parameters obtained with the proposed method are consistent with the
ones estimated by the two alternative implementations.

In the literature, two previous attempts in this direction are pre-
sented, but they were either based on a simplified or incomplete the-
oretical model than the one usually adopted in conventional PET ki-
netic modeling and discussed in this work [11], or no characterization
of the accuracy and precision of the results obtained was provided [12].
Moreover, in this work a detailed description of the reasoning behind
the derivation of the proposed solution is presented, allowing for fur-
ther extension of the approach to a wider number of kinetic models, and
ready-to-implement equations for the three most common compart-
mental models (i.e. one-tissue, two-tissue irreversible, and complete
two-tissue models) are provided.

The proposed method is validated using an extensive Monte Carlo
simulation, and then applied and tested on real clinical dynamic 3D
brain PET data, acquired on a GE Discovery RX PET/CT scanner from
control subjects.

2. Materials and methods

2.1. Kinetic modeling with a two-tissues compartmental model

While linear models are often the preferred choice because of their
computational efficiency, nonlinear kinetic models allow a more de-
tailed description of the biochemical properties of different tissues
[2,3]. Most of these non-linear models are built around the concept of
compartments, as a way to describe the temporal behavior of the tracer
within the tissue. The unknown parameters of the model are constant
transfer rates, related to the movement of the tracer among different
compartments.

Following the compartmental model theory [3], the total tracer
concentration of a tissue region in time can be modeled as:
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where fv is the fractional volume of blood in tissue, dk is the radioactive
decay constant of the chosen tracer (e.g. = −d minln(2)/109.8k

1 is the
decay time constant for [18F]FDG), C t( )p is the measured tracer con-
centration in plasma, C t( )wb is the measured whole blood concentra-
tion, and c t( )c represents the impulse response function (IRF) for the c -

th tissue compartment in such a way that the convolution with the
arterial input function, C t( )p , yields its instantaneous concentration.
The relationship between compartment concentrations models flow and
flow rates between them, and it can be described by a set of ordinary
differential equations (ODEs):
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1 , K and L are the kinetic parameter ma-
trices and u t( ) denotes the system input. In the common case of a two-
tissue compartment model, we have:
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We can define a vector = f K k k kΦ [ , , , , ]T
v 1 2 3 4 , that is the vector of

the tracer's rate constants, while with C t( )f and C t( )b we distinguish
between the concentration of the free and bound compartments of a
two-compartment tissue model [13].

The ODE system in eq. (3) can be solved analytically to obtain the
system impulse response function (IRF):
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As shown by Gunn et al. [3], this solution can be further simplified
by introducing a set of auxiliary parameters = f α α β βΦ [ , , , , ]aux
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so that we can express the tissue IRF as a sum of two exponential
functions:
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2.2. Modeling of the input function

Given the tissue impulse response function (IRF), it is known from
the system theory that we can model the output of a system as a
function of time, i.e. the measured TAC, by a convolution of its IRF and
the relevant arterial input function, C t( )p . Combining eq. (6) and eq. (1)
we obtain:
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This equation is a mathematical model for the observed TAC in a
dynamic PET scan, and it can be fitted voxelwise to the measured data,
to estimate the relevant unknown parameters. Hence, the PET tracer
kinetic modeling requires the measurements of the tracer time-activity
curves in both plasma and tissue to estimate the physiological para-
meters.

The C t( )p value in eq. (7) can be estimated by using a noisy mea-
surement of the arterial input function (AIF), which could be acquired
either by arterial sampling or derived by properly placing a region of
interest (ROI) over an artery, from a preliminary reconstruction of the
dynamic volume. In both cases, an alternative possibility is to also fit
the AIF with a theoretical model, in order to avoid adding another
source of noise and uncertainty to the fitting, which may propagate to
the estimated kinetic parameters. In the present work, we chose to
model the AIF by a combination of exponential terms, which, for fluoro-
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