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A B S T R A C T

A method to upsample insufficiently sampled experimental time series of pseudo-periodic signals is proposed.
The result is an estimate of the pseudo-periodic cycle underlying the signal. This “hypersampling” requires a
sufficiently sampled reference signal that defines the pseudo-periodic dynamics. The time series and reference
signal are combined by projecting the time series values to the analytic phase of the reference signal. The
resulting estimate of the pseudo-periodic cycle has a considerably higher effective sampling rate than the time
series. The procedure is applied to time series of MRI images of the human brain. As a result, the effective
sampling rate could be increased by three orders of magnitude. This allows for capturing the waveforms of the
very fast cerebral pulse waves traversing the brain. Hypersampling is numerically compared to the more
commonly used retrospective gating. An outlook regarding EEG and optical recordings of brain activity as the
reference signal is provided.

1. Introduction

Many signals in the biological and biomedical sciences are of a
pseudo-periodic nature with irregularly spaced, stretched, or other-
wise distorted variations of a repeating cycle. An example for a
pseudo-periodic cycle is the characteristic QRS complex observed in
electric recordings of the heart [1]. Another example are patterns of
electrical activity of the brain observed in electroencephalographic
(EEG) surface recordings [2]. Those signals usually can be measured
with a sufficient sampling rate to resolve their underlying
pseudo-periodic cycles (QRS-complex, EEG waveform, respectively).
However, often it is not possible to measure the effects of the
pseudo-periodic dynamics in parts of the body that cannot be accessed
so easily, for example deep within the brain. The method of choice to
obtain signals from anywhere in the brain is magnetic resonance im-
aging (MRI). Dynamic or functional MRI of the brain is typically
sampled at an insufficient rate to resolve the cardiac cycle or EEG
patterns [3]. In order to investigate the pseudo-periodic signal in a
particular location within the brain, one solution is to upsample the
MRI signal at that point with an effective sampling time that is much
smaller than the average cardiac cycle or EEG waveform period. The
cardiac or EEG recordings then can serve as a reference used to define
the pseudo-periodicity of the dynamics of interest.

Here, an efficient upsampling procedure, called hypersampling, is
described. Hypersampling consists of an upsampling of the under-
sampled time series by using the method of analytic phase projection
(APP). Hypersampling can be seen as a generalization of retrospective
gating [4,5]. Whereas in retrospective gating a recurring template is
identified from the reference signal, in hypersampling the continuous
phase underlying the pseudo-periodic reference signal is identified
from the reference signal. This phase estimate is then used for APP.

The organization of this manuscript is as follows: First, hypersampling
by APP is described in Section 2. Hypersampling is demonstrated on
simulations in Section 3. In Section 4, these concepts are applied to an
MRI of the brain in order to visualize the very fast pulse waves traversing
the brain, which normally cannot be resolved with MRI. A discussion
including a comparison with retrospective gating and possible further
applications to other hybrid systems with fast and slow time scales
concludes the manuscript. An appendix provides code for hypersampling
via APP, and the supplementary data a video of the pulse waves observed
in the human brain.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.compbiomed.2018.05.008.
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2. Method

2.1. Overview

Hypersampling by analytic phase projection (APP) is summarized in
Fig. 1.

Two signals are acquired from the system under study: An under-
sampled pseudo-periodic time series x(t) and a sufficiently sampled
pseudo-periodic reference signal y(t). The reference signal and the
time series are acquired during the same time interval and are
assumed to have the same pseudo-periodicity. Then, a mono-
component signal yM(t) is obtained by low-pass filtering the reference
signal y(t) (box “Monocomponent signal yM(t)”). Monocomponent
signals have a monotonically increasing phase. In other words, in a
monocomponent signal the instantaneous frequency or time derivative
of its phase is non-negative at any time [6]. This phase monotonicity is
needed later on in the phase projection step, which requires the phase
to be a piecewise invertible function. In practice, the phase of a signal
can only be obtained modulo an interval of length 2π, which causes
phase resets. At phase resets, the phase has a discontinuity from a
value near π to a value near -π, thereby crossing the zero line. The
phase is estimated from the monocomponent signal as its analytic
phase (box “Analytic phase Φ(t)”; two phase resets are visible). The
analytic phase is interpolated to the time series sampling times. Then,
the time series values are assigned to their corresponding phase values
(box “Phase projected signal xAPP(Φ)”). In other words, a coordinate
transformation from time to phase is performed: Whereas the original
time series depends on time, the phase-projected time series depends
on the pseudo-periodic cycle phase. The time series values themselves
are not altered, they are just re-ordered, thus the description as a
“projection”. The method is referred to as “hypersampling” because
the main requirement is that the underlying pseudo-periodic process is
sampled over a time that spans as many pseudo-periods as possible.

Finally, depending on the particular application, it might be necessary
to further filter the result in order to obtain an estimate for the
phase-projected cycle (box “Application with x’APP(Φ)”).

2.2. Computational details

A monocomponent signal can be written as the product of an
instantaneous amplitude ρ(t)� 0 and an instantaneous phase factor cos
(Φ(t)), or as an amplitude-phase modulation [6,7]. Writing the signal
yM(t) as an amplitude-phase modulation

yMðtÞ ¼ ρðtÞcosΦðtÞ ; (1)

its analytic extension is

yAðtÞ ¼ yMðtÞ þ iyHðtÞ ¼ ρðtÞeiΦðtÞ ; (2)

with the Hilbert transform [6]

yHðtÞ ¼
1
πP

Z

R

yMðτÞ
t� τ dτ ¼ lim

ε→0þ

1
π

Z

jt�τj>ε

yMðτÞ
t� τ dτ : (3)

The integral in this expression is a principal value integral. The analytic
extension (2) expressed via the Hilbert transform (3) provides a unique
expression for the amplitude-phase modulation (1), the “canonical
amplitude-phase modulation” [6]. The Hilbert transform itself can be
computed by standard signal processing software [8]. The analytic phase
follows from the analytic signal as

ΦðtÞ ¼ argðyAðtÞÞ ¼ argðyMðtÞ þ i yHðtÞÞ : (4)

The argument function here is the four-quadrant inverse tangent relation,
sometimes denoted atan2ðyHðtÞ; yMðtÞÞ. Its principal values are restricted
to the interval (-π, π]. In a monocomponent signal, the instantaneous
frequency is always non-negative, i.e., dΦ(t)/dt� 0, for all time points
where it is defined. Thus, the analytic phase is monotonically increasing,
and decreasing only during phase resets. The phase monotonicity can be
checked, for example, visually by graphing the analytic phase. If neces-
sary, the low-pass filter can be adjusted such as to improve monotonicity
of the analytic phase. Depending on the application, it might also be
necessary to preprocess the time series, for example to remove trends.
Once an approximately monotonic phase of the reference signal has been
obtained, one can proceed with the APP, which combines the time series
and the analytic phase of the reference signal:

The (preprocessed) pseudo-periodic time series x(t) is sampled at
times ti. The sampling times of the analytic phase Φ(t) are denoted by τj.
The analytic phase projection is a coordinate transformation of the time
series sampling times to the analytic phase,

APP : xðtiÞ → xAPPðΦiÞ : (5)

The index i assumes values from 1 to N, the number of time series sam-
ples. Here, Φi¼Φ(ti) is the analytic phase Φ(t) numerically interpolated
to the signal sampling time ti. This interpolation should be quite accurate
in general, as the analytic phase of a monocomponent signal is an
approximately smooth function, if sufficiently sampled, except at phase
resetting points. For phases near phase reset, the interpolation can
become inaccurate and it might be necessary to provide corrective
measures, for example discarding outliers. If to each time series sampling
time ti there is a corresponding reference signal sampling time τj¼ ti, the
interpolation step can be omitted, i.e., the phases Φ(τj) are taken directly
as Φi¼Φ(τj¼ ti).

Fig. 1. Schematics of the analytic phase projection (APP) method to upsample
an undersampled signal. Please refer to text for details.
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