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A B S T R A C T

Purpose: T1 mapping is an emerging MRI research tool to assess diseased myocardial tissue. Recent research has
been focusing on the image acquisition protocol and motion correction, yet little attention has been paid to the
curve fitting algorithm.
Methods: After nonrigid registration of the image series, a vectorized Levenberg-Marquardt (LM) technique is
proposed to improve the robustness of the curve fitting algorithm by allowing spatial regularization of the
parametric maps. In addition, a region-based initialization is proposed to improve the initial guess of the T1 value.
The algorithm was validated with cardiac T1 mapping data from 16 volunteers acquired with saturation-recovery
(SR) and inversion-recovery (IR) techniques at 3T, both pre- and post-injection of a contrast agent. Signal models
of T1 relaxation with 2 and 3 parameters were tested.
Results: The vectorized LM fitting showed good agreement with its pixel-wise version but allowed reduced
calculation time (60 s against 696 s on average in Matlab with 256� 256� 8(11) images). Increasing the spatial
regularization parameter led to noise reduction and improved precision of T1 values in SR sequences. The region-
based initialization was particularly useful in IR data to reduce the variability of the blood T1.
Conclusions: We have proposed a vectorized curve fitting algorithm allowing spatial regularization, which could
improve the robustness of the curve fitting, especially for myocardial T1 mapping with SR sequences.

1. Introduction

Many myocardial diseases are accompanied by the excessive depo-
sition of myocardial collagen, which results in the change of myocardial
structure [1,2]. Thanks to the fast development of cardiac magnetic
resonance imaging, the change of the myocardial structure can be eval-
uated noninvasively by measuring the pixel-wise longitudinal relaxation
time (T1) of the heart tissue, before and/or after the injection of a
Gadolinium-based contrast agent [3]. Cardiac T1 maps are generally
produced using either an inversion recovery (IR) or a saturation recovery
(SR) acquisition scheme, which means that several images need to be
acquired sequentially after a variable delay following inversion
(respectively saturation) of the magnetization, allowing a sampling of the

T1 relaxation curve for each pixel. IR techniques such as MOLLI [4] are
most commonly used due to their larger dynamic range and better pre-
cision and reproducibility, whereas SR techniques such as SASHA or
SMART1Map [5] provide more accurate T1 values [6]. For both se-
quences, typical series of 8–11 images with different inversion/satura-
tion times are acquired, and an exponential model fitting (using a
2-parameter or 3-parameter model) is performed for each pixel by
nonlinear least-squares optimization [7].

A lot of work has been done investigating the acquisition sequence
and motion correction techniques [8–11]. Yet the curve fitting algorithm
has not been completely optimized. The accuracy and precision of the
fitting process depend on many factors including the number of mea-
surements (i.e. number of input images), the number of parameters

* Corresponding author. Institut für Informatik VI, Technische Universit€at München, Parkring 13, 85748, Garching bei München, Germany.
E-mail address: shufang.liu@tum.de (S. Liu).

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

https://doi.org/10.1016/j.compbiomed.2018.03.009
Received 31 July 2017; Received in revised form 6 March 2018; Accepted 11 March 2018

0010-4825/© 2018 Elsevier Ltd. All rights reserved.

Computers in Biology and Medicine 96 (2018) 106–115

mailto:shufang.liu@tum.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2018.03.009&domain=pdf
www.sciencedirect.com/science/journal/00104825
http://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2018.03.009
https://doi.org/10.1016/j.compbiomed.2018.03.009
https://doi.org/10.1016/j.compbiomed.2018.03.009


chosen for the fitting model (2 or 3), the algorithm used for nonlinear
optimization, the choice of a good initial guess of the model parameters,
and potentially the presence of artefacts and misregistration between the
images. Fitting the recovery curve from magnitude images is a well
known difficulty in IR sequences since the phase of the complex MR
signal is lost during the magnitude reconstruction. The multi-fit algo-
rithm has been proposed in Ref. [12] to deal with that issue, however it is
relatively inefficient because multiple fits have to be tested. Alterna-
tively, phase-sensitive reconstruction can be used to restore the signal
polarity in the images [13]. However the phase data are not always
clinically available. This is because reconstructing the phase accurately is
a difficult problem is MRI, due to the need for accurate calibration of the
phase of the transmitting and receiving coils (typically 8 to 30þ receiver
channels in cardiac MRI), and/or for good coil combination algorithms
which are still a research topic [14,15]. Using a FLASH readout and Bloch
Equation simulations has been proposed in order to improve the signal
evolution model [16]. An inversion group fitting algorithm has also been
proposed to better model the inversion recovery behavior [17].

Model based image reconstruction has been investigated to accelerate
the parametric mapping. Compressed sensing has been used to recon-
struct the parametric map using overcomplete dictionaries [18]. Model
based methods can also be used to estimate the T2 maps and spin-density
maps from the raw data [19]. Regularization has also been proposed for
reducing noise in the parametric map reconstruction [20]. However, all
these methods were applied to the raw image data and required
time-consuming reconstructionmethods. In the image domain, Poot et al.
proposed an elegant framework for simultaneous estimation of para-
metric maps and noise maps with spatially smooth noise levels, based on
maximum likelihood or maximum a posteriori estimation [21]. This
approach was shown to improve the precision of quantitative parameter
estimation in diffusion tensor MRI. In this work, we propose an alter-
native approach to optimize the model fitting process by reformulating
the problem as a joint optimization whereby the T1 models of all pixels in
the image are solved simultaneously, using a matrix formulation. We
hypothesize that this matrix formulation has two benefits: (i) it provides
a vectorized version of the Levenberg-Marquardt algorithm which is
more computationally efficient than the standard pixel-wise approach
and is particularly well suited for modern architectures such as vector
CPUs or graphics processor units (GPUs); (ii) additional constraints, such
as spatial regularization, can be incorporated into the optimization to
stabilize the fitting process and/or speed up convergence.

In this paper we first describe the proposed vectorized Levenberg-
Marquardt algorithm and its exemplary implementation in the case of
SR and IR T1 mapping data with a 2- or 3-parameter model. Special care
is given to the initialization: an automatic image segmentation technique
is used as a preprocessing step to compute region-wise estimates of the
model parameters (including T1), which are used as initial guesses for the
final vectorized T1 fitting procedure. Motion is a well-known problem in
cardiac imaging and non-rigid registration techniques have been applied
recently to cardiac T1 and T2 mapping [10,11,22]. In this paper we use a
home-made non-rigid registration to correct for breathing motion. Then
the proposed vectorized approach is validated in terms of computational
efficiency and stability of the model fitting.

2. Theory

2.1. Background on Levenberg-Marquardt optimization

We first consider a single model fitting problem associated with one
pixel in the image. This can be treated as a least-squares minimization of
the error between the acquired data y, a vector of Nm measurements
(Nm ¼ 8 to 11 in this work), and the unknown model defined as a func-
tion f of an unknown parameter set p, a vector of a Np elements
(Np ¼ 2 or 3 here):

min
p

jj f ðpÞ � y jj 2
: (1)

Levenberg-Marquardt algorithm (LM) [23–25] is a popular choice for
solving Eq (1) when the function f ðpÞis nonlinear. Starting from an initial
guess p of the parameters, the method consists of searching for an optimal
refinement of the parameters δp, by linearizing the cost function around
the current estimate:

min
δp

jj f ðpþ δpÞ � y jj 2 � min
δp

jj JðpÞδp� ðy� f ðpÞ Þ jj 2
; (2)

Where JðpÞ is the Jacobian matrix of f with respect to the parameters,
evaluated at the current guess p. JðpÞ is of size Nm � Np. Therefore, LM
involves solving a sequence of linear least squares problems using a
regularized inversion of the Jacobian matrix in order to calculate the
following update of the solution at a given iteration k:

δp ¼ pkþ1 � pk ¼
�
JðpkÞTJðpkÞ þ λkId

��1
JðpkÞTðy� f ðpkÞÞ ; (3)

Where Id is the identity matrix and λk is the LM regularization coef-
ficient which is adapted throughout iterations. The rationale of LM is to
start with a large value of λk, so the method behaves like a steepest
gradient descent in the first iterations, then to decrease λk as p approaches
the solution, so the method behaves like a quasi-Newton method in the
last iterations. Such schemes–i.e. combining gradient descent and quasi-
Newton - are thought to yield optimal convergence speed in the
nonlinear optimization literature. Several variations of the LM technique
have been proposed depending on the choice of λ0, update rule for λk and
stopping condition. Here we choose the following update rule [25,26]:

(
if ΔðpkÞ > ε; set pkþ1 ¼ pk þ δp; λkþ1 ¼ min

�
λk � 2; 107

�
if ΔðpkÞ � ε; set pkþ1 ¼ pk ; λkþ1 ¼ max

�
λk=2; 10�7

�
with ΔðpÞ ¼ jj f ðpÞ jj 2 � jj f ðpþ δpÞ jj 2

jj f ðpÞ jj 2 � jj f ðpÞ þ JðpÞδp jj 2 ;

(4)

and iterations are stopped when jj pkþ1 � pk jj = jj pkþ1 jj < τ, with τ a given
tolerance, or when a maximal number of iterations was reached.

2.2. Vectorized Levenberg-Marquardt formulation

In computer programming, vectorization consists of redesigning al-
gorithms so that the same operations performed multiple times on
different data are grouped into a single operation performed once on a
large array of data. This generally results in improved performances as
modern computer architecture (CPU or GPU) can make the most of these
vector operations. At a higher level, vectorizing an algorithm processing
pixels of an image can be thought of as processing them jointly. It is
therefore possible to incorporate constraints such as spatial smoothness
to improve the processing itself.

In order to formulate the vectorized version of LM for an image ofNpix

pixels, we use the same framework as described in the previous section.
However we redefine y to be the whole acquired image dataset, a vector
of NpixNm elements, p the concatenated parameter maps, a vector of
NpixNp elements, and f the fitting model function operating on images.
Adding a spatial smoothness constraint leads to a vectorized version of
Eq. (1):

min
p

jj f ðpÞ � y jj 2 þ μ jj Gp jj 2
; (5)

where μ is a scalar controlling the spatial regularization weight and G is
an operator returning a concatenation of the spatial gradients of each
parameter map, computed by forward differences. G is a sparse matrix of
size NdimsNpixNp � NpixNp, with Ndims the number of dimensions in the
image (here Ndims ¼ 2). The vectorized LM update formula becomes:

S. Liu et al. Computers in Biology and Medicine 96 (2018) 106–115

107



Download English Version:

https://daneshyari.com/en/article/6920563

Download Persian Version:

https://daneshyari.com/article/6920563

Daneshyari.com

https://daneshyari.com/en/article/6920563
https://daneshyari.com/article/6920563
https://daneshyari.com

