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ARTICLE INFO ABSTRACT

Keywords: The increment entropy (IncrEn) is a new measure for quantifying the complexity of a time series. There are three
Increment entropy critical parameters in the IncrEn calculation: N (length of the time series), m (dimensionality), and q (quantifying
Complexity precision). However, the question of how to choose the most appropriate combination of IncrEn parameters for

Electrophysiological time series short datasets has not been extensively explored. The purpose of this research was to provide guidance on

choosing suitable IncrEn parameters for short datasets by exploring the effects of varying the parameter values.
We used simulated data, epileptic EEG data and cardiac interbeat (RR) data to investigate the effects of the pa-
rameters on the calculated IncrEn values. The results reveal that IncrEn is sensitive to changes in m, ¢ and N for
short datasets (N < 500). However, IncrEn reaches stability at a data length of N = 1000 with m = 2 and q = 2,
and for short datasets (N = 100), it shows better relative consistency with 2 <m < 6 and 2 < g < 8 We suggest
that the value of N should be no less than 100. To enable a clear distinction between different classes based on
IncrEn, we recommend that m and q should take values between 2 and 4. With appropriate parameters, IncrEn
enables the effective detection of complexity variations in physiological time series, suggesting that IncrEn should

be useful for the analysis of physiological time series in clinical applications.

1. Introduction

In recent years, many scholars have attempted to derive the laws
governing complex systems by using statistical approaches. Entropy is
defined as the lack of information or information quantity when
computing the probability distribution of the complexity of a time series
or signal [1]. At present, entropy has been widely applied to analyse
signals in various fields, such as medicine [2-6], finance [7,8] and
ecology [9]. Over the past 27 years, entropy has been increasingly
applied to analyse various physiological signals (Fig. 1), such as cardiac
data and epilepsy data. Entropy has been used to describe the changes in
cardiac signals under different physiological and pathological conditions
[10-12] and to characterize epilepsy data for identifying [13-19] or
predicting [20-22] seizures. Various entropy measures have been
established over the past two decades; the approximate entropy (ApEn),
sample entropy (SampEn) and permutation entropy (PE) are the most
commonly used measures for analysing physiological time series. Fig. 1

shows that entropy was not used in the analysis of physiological signals
before the 1990s because the calculation of early entropy measures often
required a large amount of data [23,24], and gathering sufficient data
was typically difficult or impossible in the case of physiological time
series because of the effects of disease or age. In 1991, Pincus proposed
the ApEn measure, which can be used to calculate the complexity of finite
datasets and even short datasets [23]. ApEn measures the frequency of
similar epochs in a time series; more frequent and more similar results
lower the ApEn value. Researchers have used ApEn to extract the features
of different stages of epileptic time series [25,26], and the results
demonstrate that the ApEn value decreases from the interictal stage to
the ictal stage. However, ApEn also has some disadvantages: it shows an
inherent bias towards regularity due to self-matching, there is a lack of
relative consistency among ApEn values calculated with different com-
binations of parameters, and it is sensitive to the dataset length [23,24].
SampEn is similar to ApEn, but SampEn overcomes the shortcomings of
ApEn: it avoids the self-matching of vectors, shows good relative
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Fig. 1. Total number of publications considering the entropy of physiological
signals listed on the Web of Science from 1990 to 2016.

consistency and is independent of the dataset length [24]. SampEn ex-
hibits better performance on biological signals, such as heart rate data,
epilepsy data and gait data [27,28].

Although ApEn and SampEn are often used to analyse the complexity
of electrophysiological time series, they both ignore the temporal order
of the elements in a signal [29]. In 2002, Bandt and Pompe proposed PE,
which is a symbolic dynamic measure based on the natural ordinal
pattern of a time series [29]. Following its proposal, PE was widely
adopted for use in epileptic seizure identification and prediction
[30-34]. Xiaoli Li et al. [34] compared PE and SampEn in absence
seizure. They found that PE is better able to predict absence seizures.
However, PE considers only the order of the values in a time series; it
ignores the changes in magnitude between the elements of the time se-
ries. Subsequently, by incorporating magnitude information into the
mapped patterns, many variations of PE have been developed, such as the
fine-grained permutation entropy [35] and the weighted-permutation
entropy [36]. The fine-grained permutation entropy is sensitive to
abrupt changes [32,37]; however, the weighted-permutation entropy
improves on this problem. In addition, in the case of equal values, the
processing method for PE ignores equal values or treats all equal values as
one symbol [38]. Therefore, a question arises as to how to consider the
lengths of sequences of adjacent data in a time series. The increment
entropy (IncrEn), which was proposed by Liu et al. [39], quantifies the
magnitudes of the variations between adjacent elements into ranks based
on a precision factor and the standard deviation of the time series. Liu
and his colleagues demonstrated that IncrEn shows better performance
for seizure detection than either PE or SampEn and better discrimination
when there are subtle changes in structure or energy in a time series.

IncrEn is conceptually similar to PE in that it also uses the concepts of
entropy and symbolic dynamics. In the IncrEn calculation, two letters are
used to describe the relationship between adjacent elements in a time
series. One letter represents the volatility direction, and the other rep-
resents the magnitude of the variation between the adjacent elements. In
this approach, a raw time series is reconstructed into many vectors, each
consisting of m elements. Each element of each vector represents the
increment between two neighbouring elements in the original time se-
ries. Each increment element is mapped to a word consisting of two
letters, and then, each vector is described in terms of a symbol sequence
pattern. In the IncrEn approach, the complexity is evaluated by using the
Shannon entropy to calculate the probabilities of independent patterns. A
larger number of independent patterns corresponds to a higher IncrEn
value. There are three parameters in the IncrEn calculation: the length of
the time series (N), the dimensionality (m) and the quantifying precision
(q). m represents the window size, or the length of the vectors that are
considered in the comparison, whereas q represents the precision of the
fluctuation amplitudes. Liu and his colleagues estimated the identifica-
tion capability of IncrEn on many kinds of signals, such as simulated data
and intracranial epileptic signals. However, the dependence of the
effectiveness and consistency of IncrEn on the choice of the parameters
used for the analysis of physiological time series has not yet been
investigated. If m is too large, it will be difficult to identify changes in the
time series [39]. If q is too large, IncrEn will be too sensitive to noise [39].
Thus, the selection of an appropriate combination of these parameters
based on the corresponding characteristics of the IncrEn measure is very
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important for achieving desirable identification results. Therefore, the
aims of this paper are (1) to investigate the effects of the three parameters
on IncrEn, (2) to characterize the relative consistency of IncrEn, (3) to
investigate the ability of IncrEn to distinguish between two classes based
on physiological time series, and (4) to test appropriate parameter
combinations for the IncrEn calculation.

The remainder of the paper is organized as follows. The definition of
IncrEn is introduced in Section 2, and Section 3 describes the calculation
of IncrEn in detail. Section 4 introduces the datasets used to conduct our
experiments and illustrates the influence of the parameters on IncrEn.
Section 5 reports tests of appropriate parameter choices for the IncrEn
calculation. Section 6 presents a discussion and conclusion.

2. Definition of IncrEn

The IncrEn approach is conceptually similar to the PE approach,
which naturally encodes the rank order of a time series in the form of
symbol sequences. However, the IncrEn calculation considers not only
the volatility directions but also the magnitudes of variation between
adjacent elements. For a time series {x(i),1 < i < N}, where N is the data
length, an increment series {v(i),1 <i <N — 1} is constructed, where
v(i) = x(i+ 1) — x(i). IncrEn can then be calculated with a chosen num-
ber m of embedding dimensions. The increment series is divided into N —
m vectors, each of m dimensions. Each element in each vector is mapped
to a word consisting of two letters, the sign and the size. The sign in-
dicates the direction of the volatility between the corresponding neigh-
bouring elements in the original time series; it takes values of 1, 0, or —1,
indicating a rise, no change, or a decline, respectively. The size describes
the magnitude of the variation between these adjacent elements. Thus,
the original time series is mapped to N — m words of 2m letters each. Let
q be the quantifying precision of the variation between adjacent ele-
ments. Then, for a word of 2m letters, there are (2q +1)™ possible
distinct variations. Let w,, denote the nth unique word. Q(wj) is the total
number of instances of the nth unique word; thus, we can define the

relative frequency of each unique word as P(w,,) = %. Finally, IncrEn is
defined as shown in Eq. (1).

1 (2g+1)"
H(m) = ——— > P(w,)logP(w,). €))
n=1
here, m — 1 is a normalization factor. H(m) is bounded on {0, %} .

3. Calculation of IncrEn

In the IncrEn approach, the complexity of a time series is measured by
encoding the signs and sizes of the variations between adjacent elements
to reflect its natural fluctuations. The computation of IncrEn for a given
time series x{i} of length N consists of six steps [39]:

I Construct the increment time series {v(j),1 <j <N — 1} from the
original time series {x(i)}.

II Divide the increment time series {v(j)} into vectors of m points in
length. m must be fixed before the IncrEn calculation. This division
will result in N-m increment vectors,
V(i) =p@,....vI+m-1),1<I<N-m

III Calculate the pattern vector w; for each increment vector V(I). First,
calculate the mapped word for each element, where the sign is s, =
sgn(v(k)) and the size gx is equal to the minimum between g and

v()xq

std({v(j)})
IncrEn calculation. w; is constructed as the combination of all corre-
sponding s, and g pairs.

IV Count the total number of instances Q(wy) of every unique word wy
that occurs in {v(j)}.

or to zero if std({v(j)}) = 0. ¢ must also be fixed before the
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