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A B S T R A C T

Recently, an increasing number of studies have employed multivariate pattern analysis (MVPA) rather than
univariate analysis for the dynamic pattern decoding of event-related responses recorded with a MEG/EEG sensor.
The use of the MVPA approach for source-reconstructed MEG/EEG data is uncommon. For these data, we need to
consider the source orientation information and the signal leakage among brain regions. In the present study, we
evaluate the perspective of the MVPA approach in the context of source orientation information and signal
leakage in source-reconstructed MEG data. We perform face vs. tool object category decoding (FvsT-OCD) of
event-related responses from single or multiple voxels from a brain region using a univariate analysis approach
and/or the MVPA approach. We also propose and perform symmetric signal leakage correction of source-
reconstructed data using an independent component analysis-based approach. FvsT-OCD using single voxel in-
formation shows higher sensitivity for the MVPA approach than univariate analysis, as the MVPA approach
efficiently utilizes information on all three dipole orientations and is less affected by inter-subject variability. The
MVPA approach shows higher sensitivity for FvsT-OCD when considering information from multiple voxels than
for a single voxel in a brain region. This finding suggests that the MVPA approach captures the latent multivoxel
distributed pattern. However, the results may be partly or entirely attributable to signal leakage between brain
regions, as the sensitivity is substantially reduced after signal leakage correction. A consideration of signal leakage
is therefore essential during the evaluation of MVPA outcomes.

1. Introduction

One of the goals of functional neuroimaging studies is to determine
when, where and how brain regions are involved in a particular cognitive
process. To make this determination, the researcher often performs hy-
pothesis testing to identify an association between recorded brain ac-
tivity and behavioral or perceptual parameters. One commonly used
approach is univariate analysis (UVA), in which mass univariate hy-
pothesis testing is performed across channels or voxels (independent
variables). Recently, an increasing number of studies have employed a
multivariate pattern analysis (MVPA) approach for evoked activity
recorded from various neuroimaging modalities, such as fMRI, MEG and
EEG [1–3]. The MVPA approach involves the single-trial classification of
labeled (behavioral or perceptual parameters) and distributed brain re-
sponses across these channels or voxels, using a machine learning

technique. In contrast to the UVA approach, the MVPA approach enables
the investigator to evaluate whether the distributed pattern of brain re-
sponses at multiple voxels or channels is associated with an experimental
variable [1,2,4]. In general, the MVPA approach is more sensitive than
the UVA approach in detecting the difference between two brain states,
for two reasons [2,4,5]. Firstly, the MVPA approach is able to capture a
distributed multi-dimensional effect in which multiple variables (voxels
or sensors) carry non-identical information about an experimental con-
dition, which cannot be captured by a single variable. Secondly, the
performance of the UVA approach is more susceptible than that of MVPA
to functional and spatial inter-subject variability in brain activity.

Multi-voxel pattern analysis using the MVPA approach have changed
the way of fMRI data analysis and their neural underpinnings [1,3,4].
Recently, MEG/EEG-based cognitive studies have also employed the
MVPA approach, considering the scalp distribution of event-related
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potential (for EEGmodality) or field (for MEGmodality) as a multivariate
distributed pattern to address the experimental question, particularly
detection of differences between mental states [2,6,7]. The extension of
the MVPA approach to source-reconstructed MEG/EEG data can also
provide a source localization of the effect in the brain. However, the use
of the MVPA approach to source-reconstructed MEG/EEG is uncommon.
Few studies have applied the MVPA approach to source-reconstructed
MEG or EEG data considering the distribution of the current density of
voxels from an entire cortex or a brain region of interest [8–10]. In an
analysis of fMRI data using the MVPA approach, researchers have meant
to find -an association between the multi-voxel distributed pattern of
activation in a brain region and the experimental variables [1,3,4]. Each
voxel has a single attribute (BOLD amplitude response), and BOLD ac-
tivity is independent across the voxels (due to the higher spatial resolu-
tion). Source-reconstructed MEG/EEG data have different physical
properties from fMRI neuroimaging data; for example, (i) each voxel or
source location has three attributes (source orientations) per voxel, and
(ii) spatial resolution is limited. This should therefore be considered
when performing analyses using the MVPA approach on
source-reconstructed MEG/EEG data.

In source-reconstructed data, each source location has three time
series or attributes; that is, one for each of the three x-, y- and z-
orthogonal dipole orientations. In the UVA approach, these three time
series or variables are reduced to one, either by constraining the source
orientation to a single optimal direction (normal to the cortical surface or
source direction with maximum variance) or by taking the norm of all
three variables (refer to http://neuroimage.usc.edu/brainstorm/
Tutorials/SourceEstimation). These dimensionality reduction steps are
likely to cause information loss. In contrast, the MVPA approach can
utilize information from all three orientations, which is not straightfor-
ward in the UVA approach.

Spatial filters used for inverse solutions induce linear interactions
between reconstructed source activity from nearby source locations; this
is often referred to as a signal leakage phenomenon [11,12]. The per-
formance of the MVPA approach for a particular brain region can be
attributable to activity within a single or a few voxels, rather than a
distributed multi-voxel pattern. Consequently, the performance of the
dynamic pattern decoding of that brain region can be partly or entirely
attributable to signal leakage from nearby brain regions. A consideration
of signal leakage is therefore essential, particularly when employing the
MVPA approach involving information from multiple voxels in a brain
region. It is also important to analyze whether a multi-voxel dimen-
sionality effect exists across the voxels sensitive enough to detect the
difference between conditions than a single-voxel-level analysis in such
practical scenario. Signal leakage induces linear and stationary in-
teractions between nearby source locations. The ICA algorithm can
therefore be used to attenuate the signal leakage between source loca-
tions in source-reconstructed MEG data, as shown in our earlier studies
[12,13]. In the present study, we extend this algorithm to perform
symmetric signal leakage correction of source-reconstructed MEG/EEG
data.

In the present study, we evaluate the perspective of MVPA analysis for
source-reconstructed MEG data in relation to source orientation infor-
mation, the multi-voxel dimensionality effect, and inter-subject vari-
ability. We also evaluate the extent to which signal leakage and its
correction can influence the sensitivity of MVPA outcomes.

2. Materials and methods

2.1. Dataset and preprocessing

We used a publicly available dataset from the WU-Minn Human
Connectome Project [14], and the terms of use were followed for open
access data, as provided by the Human Connectome Project. This study
used preprocessed and artifact-removed working memory (WM) experi-
mental MEG recordings from 82 subjects. For detailed information

regarding the experimental paradigm and data preprocessing, please
refer to the Human Connectome Project (HCP) web portal (http://www.
humanconnectome.org/storage/app/media/documentation/meg1/
MEG1_Release_Reference_Manual.pdf). In brief, MEG data were recorded
from the subject performing a 0-back or 2-back WM task in the visual
sensory modality. There were two sessions; in each of these, there were
eight blocks for both the 0-back and 2-backWM tasks. We used data from
the second session for this study since the participants became familiar
with the WM task (particularly for the 2-back WM task) after the first
session, and behavior performance was higher for the second session
than for the first. In a single block of the 0-back WM task, a target image
of either a face or tool was displayed at the beginning of the block; then, a
sequence of 10 sample images of the same object category was displayed,
interspaced with a fixation cross. The participant was asked to press a
button if the sample image matched the target image. The task was
slightly different for the 2-back WM task block; here, the target image
was not displayed, but the participant had to press a button when the
sample image matched the image from the previous 2-position task.
Irrespective of the task, the image and fixation cross were displayed for
2 s and 0.5 s, respectively. Moreover, the button press response was
performed during when the fixation cross was presented. There were a
total of 160 trials in a session, i.e. 40 trials for each of the 0-back-face,
0-back-tool, 2-back-face, and 2-back-tool WM tasks. The face and tool
object category stimuli used in this dataset provided an opportunity for
the analysis of object category decoding utilized in the present study. We
selected an equal number of trials from the 0-back-face, 0-back-tool,
2-back-face, and 2-back-tool WM tasks for this analysis. Consequently,
we had 50 to 80 (median: 70) trials for the subjects, for each of the face
and tool object stimulus categories in this analysis. When necessary, we
considered the baseline period to range from 1.4 s to 1.9 s onset time
latency instead of the pre-stimulus period, since the presence of an offset
response from previous visual stimuli made the pre-stimulus period (i.e.
0.5 s–0 s) unsuitable.

MEG data were recorded at a sampling rate of 2034.5101Hz with 248
channels, using a 3600 MEG system (4D Neuroimaging, San Diego, CA).
Next, the data sampling frequency was down-sampled to 508.6275Hz.
For each participant, fiducial points and head surface anatomy were
digitized, and structural MRI was also scanned. The HCP portal provides
a pre-computed headmodel (single-shell) and sourcemodel (a cortical
sheet with 8004 source grid point locations, nonlinearly pre-registered to
the standard template). The headmodel, sourcemodel and MEG sensor
data were registered (registration was refined using the iterative closest
point algorithm) to a common three-dimensional space (BTi coordinate
system).

2.2. Reconstruction of source signals

Source (voxel) time series were reconstructed from sensor MEG data
using an unconstrained weighted minimum norm estimate (wMNE) in-
verse solution [15]. For computation of the inverse solution, lead fields
were pre-whitened, the signal-to-noise ratio (SNR) value was set to three,
and the normalization parameter value was set to 0.8. Due to the un-
constrained condition, each source location had three source time series
corresponding to three orthogonal dipole orientations (x-, y-, and z-ori-
entations) (Vxyz, Eq. (1)). We also computed a single-source time series
from three source time series (i.e. we reduced the source orientation
dimension) in two ways: (i) we projected all three source time series onto
their strongest orientation, which meant computing the first principal
component of three source time series using a singular value decompo-
sition (SVD) approach (Vsvd, Eq. (2)); and (ii) we computed the norm of
amplitude from three dipole orientations at each time sample (Vnorm, Eq.
(3)).

VxyzðtÞ ¼
�
VxðtÞ; VyðtÞ; VzðtÞ

�
(1)
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