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A B S T R A C T

A premature birth, before completion of the 32nd pregnancy week, increases the risk of cerebral hemorrhage. The
cause of brain bleeding is very often the germinal matrix of the immature brain. The germinal matrix consists of
richly vascularized neuroepithelial cells and is located over the lower part of the head of the caudate nucleus. By
32-36 gestation weeks, the germinal matrix essentially disappears so that its hemorrhage is a disease of premature
infants.

The aim of this paper consists in developing a model of the brain vascular network and computing the pressure
distribution in the germinal matrix, particularly near arterioles and venules, where cerebral hemorrhage may
occur. Capillary networks consisting of several millions of vessels are directly simulated in the present study.

1. Introduction

Advances in neonatal care have increased survival of preterm infants,
but the occurrence of complications in postnatal development remains
high. One of the most frequent (around 15–20% [1,2]) complications in
infants born before 32 weeks gestation is intracerebral hemorrhage,
which can lead to lifelong impairments such as cerebral palsy [3]. Most
hemorrhages originate from the subependymal germinal matrix [4], a
specific region in the immature brain between thalamus and caudate
nucleus with high vascularity and a fragile capillary network [5]. The
germinal matrix reaches its maximum size at 22 weeks gestation, then
rapidly shrinks and disappears by 34 weeks [6]. Electron-microscope
observations [7–9] show that vessels in the germinal matrix have a
larger diameter than in the cortex, having thereby, according to Laplace's
law, a larger wall tension and, consequently, higher probability of vessel
rupture [8].

During recent years, numerical simulations clarifying influence fac-
tors and consequences of intracerebral hemorrhage in preterm infants
have been performed [10,11]. These simulations, however, do not take
into account the presence of the germinal matrix in the preterm brain.
The aim of the present study is the development of a mathematical model
for computing pressure fields in the germinal matrix. The study is a part

of the project “Mathematical simulations towards preventing cerebral
hemorrhage in premature infants” supported by the Klaus Tschira Stif-
tung. In the current stage, data necessary for the simulations are taken
from the literature. Nevertheless, the implementation of the project as-
sumes collection of clinical data for different gestation ages of patients.

An important part of the simulation of cerebral blood flow is the
statement of a vascular model that includes a capillary network. There
are different approaches to modeling brain capillary networks. Publica-
tion [12] contains an overview of some recent results concerned with
microvascular simulations. Various methods have been developed to
generate anatomically consistent capillary networks (see e.g. Refs.
[13–19]). In Ref. [14], numerical simulations are conducted for an
anatomically accurate human intra-cortical vascular network consisting
of about 10 thousand of vessels. Sets of model data used there have been
obtained in Ref. [13] on the base of Duvernoy's collection of brain slices,
see Ref. [20]. Using flow balance models yielding systems of linear
equations, the authors calculate important characteristics of blood cir-
culation in small parts of human brain. Particularly, the mean pressure
drop and the pressure distribution in microvascular networks considered
are computed. Similar to [14], a mathematical model aiming at the
simulation of capillary blood circulation is considered in Ref. [16]. In the
last paper, the consideration is restricted to two-dimensional networks to
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avoid limitations when using experimental images. Numerical simula-
tions are conducted for capillary networks containing several dozen of
capillaries. In Ref. [18], an algorithm for the creation of capillary net-
works from X-ray microscopic images is proposed to calculate pressure
and flow distributions. In Ref. [19], four methods for artificial network
creation to simulate the real cerebral microvasculature have been pro-
posed and numerically compared. The methods are based on the random
generation of nodes and edges of the capillary network. The number of
edges corresponding to one node does not exceed 3. Themain criterion of
adequacy of the generated network is the obtained vessel length distri-
bution in comparison with data from Ref. [13]. The microvascular flow
and oxygen transport are analyzed using the constructed networks. It
should be noted that only small networks, consisting of several hundreds
of capillaries, can be simulated in such a way.

On the other hand, our experience shows that a precise recovery of
the geometric structure of capillary networks is not too much important
for estimating its hydraulic resistance. The more essential thing is the
topology of the network, i.e. the number of incident capillaries for each
capillary junction. Moreover, there is experimental evidence that the
number of incident capillaries varies essentially from node to node. By
analogy with electric circuits (cf. [21]), taking into account that capillary
vessels are very short and do not interact one with another, topologically
equivalent capillary networks with different geometries give similar
outcomes. The model proposed in the present paper implements random
net-like capillary topologies with variable numbers of incident edges. The
creation of such networks is relatively simple and allows us to simulate
regions with jammed or corrupted vessels. Our algorithm is able to treat
networks containing up to 800 million capillaries, which corresponds to
the capillary network of the complete adult human brain (see Ref. [22]).
Thus, the algorithm proposed is well suited for some applications that
deal with large vascular networks [18].

Another important question in modeling capillary network flow is the
computation of hydraulic resistances of capillaries. In this connection,
there is a popular approach considering the propagation of red blood
cells (RBCs) and plasma as Poiseuille's flow of a homogeneous fluid with
the so-called apparent viscosity, see e.g. Refs. [14] and [23]. The direct
role of RBCs in the dynamics of microcirculation has been considered in
numerous publications (see e.g. Refs. [21,24–29]). It is shown that the
local concentration of RBCs has a strong impact on the local flow resis-
tance, which influences the pressure and flow fields in the whole
network. Particularly, the importance of considering the capillary
perfusion as two-phase flow of RBCs and plasma is indicated in Ref. [21].
The specific of our approach is that the flow is considered as the motion
of a fluid with variable viscosity: Very viscous central part corresponds to
RBCs, and a lubrication plasma layer between the capillary wall and
RBCs reduces the friction.

The present paper is organized as follows. In section 2, a hydrody-
namical description of the propagation of red cells in capillaries is
developed. This allows us to compute the hydraulic resistance of a single
capillary, depending on its radius and length. An explicit formula derived
here is important for the simulation of large capillary networks consid-
ered in the next sections. In sections 3 and 4, a method of computing total
resistance of the germinal matrix and the rest part of the brain is pro-
posed. It is assumed that capillaries are connected in a network according
to some variable topology, i.e., for each node, a random number of
incident edges are generated. The topology is characterized by the
average number of incident edges for each node. It is supposed that the
length and radius of capillaries are random values distributed according
to data reported in the literature. Moreover, the network contains blood
sources and sinks (inlets and outlets) distributed over the network. They
are associated with the arteriolar and venular endpoints, respectively.
The calculation of the total resistance is being performed by the direct
computation of the total blood flux through the capillary network by
analogy with electric circuits, i.e. using Kirchhoff's law and solving a
large sparse system of linear algebraic equations. Section 5 concerns with
computing the pressure distribution in the germinal matrix. First, the

total hydraulic resistance of the germinal matrix and the rest part of the
brain are computed. Second, using a modified model from Ref. [22], the
pressure drop in the germinal matrix is determined. Finally, solving large
sparse systems of linear algebraic equations resulting from Kirchhoff's
law, the pressure distribution inside the germinal matrix is calculated.
Thus, the pressure value in each capillary becomes available, which al-
lows us to catch dangerous pressure gradients near inlets or outlets. This
seems to be important because some authors consider germinal matrix
hemorrhage as the result of venous rupture (cf. [30]), and other authors
claim that the hemorrhage is caused by rupture during arterial hyper-
tension (cf. [8]).

2. Blood flow through capillaries

Red cells move one by one in capillaries using the blood plasma as
lubrication, see Fig. 1 and [29]. This motion can be modeled as the flow
of a continuous fluid with the variable viscosity as sketched in the above
mentioned figure. The idea of modeling the cell/plasma mixture as a
fluid with variable viscosity is based on the results obtained in Ref. [31].
It is proven there that the motion of a rigid body in a fluid can be
described by replacing the body with another viscose fluid whose vis-
cosity tends to infinity. The neglection of gaps between the red cells is
motivated by the following results. First, data of capillary imaging, see
e.g. Refs. [32] and [33], indicate very small gaps between the red cells.
Second, the results of [34] and [35], where the authors have proven that
a very strongly oscillating structure, even with excluded volume, does not
allow the liquid to penetrate inside it. The same do relatively quickly
moving (hundreds of diameters per second) red cells. Therefore, in a first
approximation, the resistance of a capillary can be considered to be in-
dependent on small variations of gaps between red cells, i.e., on small
variations of the haematocrit. Thus, in our opinion, the blood flow model
proposed in the present paper is more reliable compared with the popular
model of Poiseuille flow with the so-called apparent viscosity, see e.g.
Refs. [14] and [23].

To describe the blood flow in a capillary, consider the velocity field,
u, in the cylindrical coordinates (see Fig. 2). Conventionally, neglect the
radial and angular components of the velocity (ur ¼ uθ ¼ 0) and assume
that its vertical component depends on the radial variable only
(uz ¼ uzðrÞ). Moreover, assume the stationarity of the velocity, incom-
pressibility of the fluid (∇⋅u ¼ 0), absence of external forces, and radial
variability of the viscosity (μ ¼ μðrÞÞ.

With these assumptions and the notation v ¼ uz, for brevity, the
Navier-Stokes equations of motion is reduced to the following ordinary
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Fig. 1. Modeling the motion of red cells.
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