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A B S T R A C T

Background: In the era of personalized medicine, it's primordial to identify gene signatures for each event type in
the context of competing risks in order to improve risk stratification and treatment strategy. Until recently, little
attention was paid to the performance of high-dimensional selection in deriving molecular signatures in this
context. In this paper, we investigate the performance of two selection methods developed in the framework of
high-dimensional data and competing risks: Random survival forest and a boosting approach for fitting propor-
tional subdistribution hazards models.
Methods: Using data from bladder cancer patients (GSE5479) and simulated datasets, stability and prognosis
performance of the two methods were evaluated using a resampling strategy. For each sample, the data set was
split into 100 training and validation sets. Molecular signatures were developed in the training sets by the two
selection methods and then applied on the corresponding validation sets.
Results: Random survival forest and boosting approach have comparable performance for the prediction of sur-
vival data, with few selected genes in common. Nevertheless, many different sets of genes are identified by the
resampling approach, with a very small frequency of genes occurrence among the signatures. Also, the smaller the
training sample size, the lower is the stability of the signatures.
Conclusion: Random survival forest and boosting approach give good predictive performance but gene signatures
are very unstable. Further works are needed to propose adequate strategies for the analysis of high-dimensional
data in the context of competing risks.

1. Introduction

Over the last decade, gene signatures based on micro-array data are
on the rise in oncology [1,2]. The main objective of gene signatures is to
improve the management of cancer patients by prognostication and
treatment prediction [3]. Different studies demonstrated that gene sig-
natures were not unique and strongly dependent on both the patients'
selection and the regression models used [4–6]. Gene signatures are
generally developed and validated using time-to-event endpoints such as
metastasis free survival, disease free survival, or overall survival. As
several event types are included in their definition, these endpoints can
be considered as composite [7]. In order to improve risk stratification

and treatment strategy, it will be interesting to identify gene signatures
for each event type in the context of competing risks [8,9]. For example,
loco-regional recurrence is becoming less common in breast cancer. To
better guide optimal loco-regional treatment, it is important to identify
gene signatures which specifically predict the risks of loco regional
recurrence. Breast cancer patients are also at risk of other event types,
such as distant metastasis and death, which can preclude the occurrence
of loco-regional recurrence. Other various cancers can be greatly
impacted by the development of genes signatures for a given event type.

Recently, several regression methods for handling high-dimensional
data have been extended to the competing risk data setting. Until
recently, little attention was paid to the performance of such methods in
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deriving molecular signatures for predicting cumulative incidence in
competing risk settings. One popular approach in the context of
competing risks with high-dimensional data is to use cause specific
hazard modeling. Cox proportional hazard is fitted using a penalized
regression model for the event of interest and by considering individuals
who fail from competing events as censored observations [10]. But a
covariate that reduces the cause specific hazard of a competing risk can
indirectly increase the cumulative incidence of the event of interest [11].
In fact, cumulative incidence represents the probability of disease in
presence of a competing risk. For low-dimensional data, the Fine & Gray
model, which is an extension of the Cox model, has been proposed to
model the subdistribution hazard [12]. In high-dimensional data (num-
ber of covariates >> number of observations), the Fine and Gray model
cannot be fitted to identify most predictive genes and less traditional
approaches are required. Methods based on random forests have recently
been adapted for survival analysis in presence of competing risks [13],
with a modified weighted log-rank splitting rule modeled according to
the Gray's test [14]. On the other hand, Binder et al. [15] have proposed a
gene selection method based on the Fine and Gray model with a boosting
approach. These different methods, now implemented in statistical
packages, become increasingly popular for the analysis of competing
risks data. But, to our knowledge and contrary to classical survival
methods, there is no previous work which has compared these two
methods on different criteria such as stability and prognostic ability.

The main objective of this publication is to compare different selec-
tion methods for high-dimensional time-to-event data in the context of
competing risks using a published data set on bladder cancer and simu-
lated datasets. After presenting an example of the application of these
methods on the former, a resampling strategy was performed to evaluate
both gene selection and predictive accuracy and to explore the effect of
the training set sample size on the performance.

2. Patients and methods

2.1. General principles: competing risks setting

Fundamentals of competing risks have been extensively reviewed in
the literature [11,16,17]. In a competing risks setting, patients are at risk
for different event types (for example k). We only observed the pair of
variables (Y, Δ) where Y corresponds to the time to first event (or last
follow-up news) and Δ the type of first event:

Δ ¼

8>><
>>:

0; censored
1; event of type1
:::
k; event of type k

One quantity of interest is the cumulative incidence of event k,
denoted FkðtÞ, which corresponds to the probability of event k before
time t in the presence of competing events [18]. The corresponding
mathematical expression is:

FkðtÞ ¼ Pr½Y � t;Δ ¼ k� ¼ ∫ t
0SðtÞλkðtÞdt

with SðtÞ the probability of not having failed from some event estimated
by Kaplan Meier and λkðtÞ the cause specific hazard of event k. In order to
compare cumulative incidence associated with each event type, a k-
sample test is proposed by Gray [14].

To evaluate influence of covariate, Fine& gray proposed to model the
subdistribution hazard of event k by Ref. [15]:

hkðtjxiÞ ¼ hk;0ðtÞexp
�
x0iβ

�

with hk;0ðtÞ an unspecified baseline subdistribution hazard of event k, xi
the vector of covariates and β the vector of the regression models
coefficients.

2.2. Bladder cancer dataset

The public data set GSE5479 has been downloaded from the platform
GEO, corresponding to 1381 preprocessed custom microarrays from 404
non-muscle invasive bladder cancer samples used by Dyrskjøt et al. [19].
Only patients for whom original progression classifier and clinical
covariates were available (age, sex, stage, grade and treatment) were
included in our study (n ¼ 301). The event of interest, which is pro-
gression or death due to bladder cancer, occurred for 84 patients (11
events after 5 years). The competing event, death due to another cause or
unknown cause, was observed in 33 patients and 184 patients were
censored at the last follow-up time. Cumulative incidences obtained
using Prentice estimators were respectively 26.8% and 11.2% at 5 years
for event of interest and competing event.

2.3. Simulated datasets

Using the algorithm employed by Binder et al. and Tapak et al.
[10,15], four datasets have been simulated with different sample sizes.
For each dataset, we have generated two competing events and 1500
covariates normally distributed. Among the 1500 covariates, sixteen of
them were informative and selected from three blocks of correlated
covariates:

� four have an increasing effect on both type 1 and 2 hazards (block 1:
correlated genes with correlation in block equals to 0.5)

� four have an increasing effect on the type 1 hazard and a decreasing
effect on the type 2 hazard (block 2: correlated genes with correlation
in block equals to 0.35)

� four have a decreasing effect on the type 1 hazard only and four
others have an increasing effect on type 2 only (block 3: correlation
equals to 0.05)

Among these sixteen covariates, the true vectors of coefficients β1 for
event 1 and β2 for event 2 take the following values:

β1 ¼ ð0:5; 0:5; 0:5; 0:5; 0:5; 0:5; 0:5; 0:5;�0:5;�0:5;�0:5;�0:5; 0; 0; 0; 0Þ

β2 ¼ ð0:5; 0:5; 0:5; 0:5;�0:5;�0:5;�0:5;�0:5; 0; 0; 0; 0; 0:5; 0:5; 0:5; 0:5Þ

The remaining covariates have no direct effect on both hazards, also
true coefficients were set to 0. For each event, survival times were
generated using cause specific exponential model. Censoring times
follow a uniform distribution U[0;9], resulting in a censoring rate of
�35%. Parameters used to simulate each dataset are summarized in Supp
Table 1.

2.4. Learning methods for classification

This section briefly describes the two selection methods investigated
in this publication. A more detailed mathematical presentation can be
found in previous works.

2.5. Random Survival forests

Random Survival forests (RSF) is a non-parametric method of variable
selection for right-censored survival data, which was introduced by Ish-
waran et al., in 2008 [20], and then adapted for competing risks by the
same authors in 2014 [13]. Main steps of the algorithm are presented
Fig. 1A. Random Forests are induced from bootstrap samples of the
training set with modified weighted log-rank splitting rule according to
Gray's test(14). About 37% of the data are excluded in each bootstrap
sample; these are the so-called “out-of-bag data”. The remaining data are
used to build each tree. Variable hunting is used for the random forest
variable selection, which is a combination of “variable importance”
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