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a b s t r a c t

We discuss the solution of cornea curvature using a meshless method based on radial basis functions
(RBFs). A full two-dimensional nonlinear thin membrane partial differential equation (PDE) model is in-
troduced and solved using the multiquadratic (MQ) and inverse multiquadratic (IMQ) RBFs. This new
approach does not rely on radial symmetry or other simplifying assumptions in respect of the cornea
shape. It also provides an alternative to corneal topography modeling methods requiring accurate ma-
terial parameter values, such as Young's modulus and Poisson ratio, that may not be available. The results
show good agreement with published corneal data and allow back calculations for estimating certain
physical properties of the cornea, such as tension and elasticity coefficient. All calculations and generation
of graphics were performed using the R language programming environment [34] and RStudio, the in-
tegrated development environment (IDE) for R [36], both of which are open source and free to download.

Part II [48] of this paper demonstrates how the method has been used to provide a very accurate fit to
a corneal measured data set.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The cornea is one of the most important parts of the human (and
animal) eye – Fig. 1. It is an important integral part of the remarkable
process of vision. In order to see, our eyes have to transform the
incoming light signal (photons) into a series of electrical signals
which can then be decoded by the brain into an image that we
perceive. This is a truly complex process which can successfully take
place only when all the organs are normal and healthy: the eye is a
place where biomechanics meets optics. As the incident light beam
enters the eye it is being refracted by the cornea, then passes through
the lens which focuses it onto the rear of the eye – the retina. It then
starts a series of processes producing electrical impulses which travel
to the brain via the optic nerve. The shape of the cornea is controlled
by the intraocular pressure (IOP) of the anterior chamber. This usually
varies between 10 and 21 mmHG, and is generated by the con-
tinuous production of and outflow of aqueous humour in the eye.

The reader can find a thorough exposition of the eye anatomy
in [21] while a more physical description of the process of vision
can be found, for example, in [2]. In this paper we concentrate on
mathematically modeling corneal topography.

The geometrical and mechanical properties of the cornea are very
important since this organ plays a crucial role in vision. First, from the
structural point of view, it has to be very durable and strong in order
to withstand various external risks and dangers such as damage due to
contact with foreign substances (for a review of corneal biomechanics
see the works [7,23]). Second, the important optical properties of the
cornea make it very transparent in order for a light beam to refract
undisturbed (a molecular treatment can be found for example in [17]).
Lastly, the refraction has to be done in a precise way to allow the
photons to arrive exactly on the retina – not in front of it nor behind
(which leads to myopia and hyperopia) (for an exposition see [8,10]).
Ophthalmologists measure corneal topography in order to diagnose
many vision disorders such as the aforementioned myopia and hy-
peropia, and also keratoconus and astigmatism (see [6,24]). Under-
standing the foundations of the shape and curvature of the cornea is
thus indispensable in optometry, and this can be achieved through the
use of mathematics.

A number of different mathematical models of the cornea have
been developed throughout the last century. Probably the first
scientist that conducted engineering research into the cornea was
H. von Helmholtz1 during the 19th century [18]. He proposed conic
sectional surfaces of revolution to model the corneal topography
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(ellipsoids and paraboloids). Up to this day, these models are very
accurate and are used widely (see e.g. [5,26]). As they were in-
tended, conical section models are mostly empirical and are based
on the fact that in the first approximation, the cornea resembles a
surface of revolution. These simple models have also been used to
build more accurate and realistic, structural mechanical descrip-
tions of the material properties of the cornea (see [1]). Several
approaches to that problem were undertaken, for instance based
on a shell theory [44], sandwich theory [28], full equations of
linear elasticity [14] or a purely numerical finite element model
(FEM) [30,1,22,35]. Moreover, a very frequent approach to mod-
eling corneal features (height data and optical wavefronts) is based
on an expansion in a series of orthogonal Zernike polynomials
which are suited to describe aberrations in optics [19,43] Also, we
would like to mention a very recent approach which uses the
Brillouin optical microscopy to infer into the three–dimensional
structure of the cornea and eye as a whole [39,40]. All of these
methods are used to test the underlying theory and verify various
experiments conducted to learn about the biomechanical proper-
ties of the eye. Since the cornea has strong nonlinear character-
istics, this is an important and non-trivial task.

In this paper we extend the analysis of our previous work on a
model of intermediate complexity [33], lying between simple
conical sectional models and very complex structural mechanical
ones. More specifically, we model the cornea in a limit of vanishing
thickness with an elastic nonlinear membrane shaped by the in-
traocular pressure. We relax some of our previously used simpli-
fying assumptions, and provide a numerical analysis and its im-
plementation using a meshless method with radial basis functions.

2. Mathematical model

2.1. Corneal topology

Our previous paper described a false transient analysis and so-
lution to cornea curvature, as modeled by a 1D thin plate mathe-
matical model [33]. This paper extends the 1D results by applying
the following thin-plate 2D boundary value PDE curvature model
to the cornea, with the calculations being performed over the

spatial domain Ω, assumed elliptical, and boundary Ω∂ ,
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where BCs indicate boundary conditions, h(x) represents the
height of the cornea over its surface. The maximum height hmax, is
the so-called ocular sagitta or sagittal height/depth, from geometric
theory. The constants represent physical characteristics of the
cornea, assumed to be isotropic, and are defined as: tension T [N/
m], elasticity coefficient k [N/m3] and intraocular pressure P [N/m2].

We model the spatial domain as an ellipse with semi-major and
semi-minor axes ra and rb. Letting =R ra represent a typical linear
length associated with the cornea, and normalizing, we obtain
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where ≔a kR T/2 and ≔b PR T/ in order for h to be nondimensional
(scaled by R).

When Eq. (2) is expanded in Cartesian coordinates (x,y), see
Appendix A, we obtain the following equivalent form:
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where we have used subscript notation for representing partial
derivatives, i.e. = ∂ ∂h h x/x , etc. Looking at the front of the cornea,
the horizontal axis is represented by x and the vertical axis by y.

We model the cornea on a two-dimensional Cartesian domain
defined by the boundary between the cornea and the remainder of
the eye – refer to Fig. 1. This boundary is often referred to as the
corneal–limbal ring (CLR), the dark ring around the iris, and we
adopt this terminology.2

We take the CLR to be a planar ellipse in shape, having semi-
major and semi-minor axes ra and rb respectively, with small ec-
centricity [29]. Again we elect to apply the method of false tran-
sients and this requires modifying the above boundary value, time-
independent PDE to a time-dependent PDE by adding a time deri-
vative term to the right hand side. Eq. (2) is therefore modified to
become the following initial value (Cauchy) problem:
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Fig. 1. Schematic diagram of human eye. Image by R.H. Castilhos, reproduced with
permission.

2 This may not be strictly accurate for elderly subjects when the CLR may
become difficult to identify precisely.
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