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a b s t r a c t

Given a graph G, a set of spanning trees rooted at a vertex r of G is said vertex/edge independent if, for
each vertex v of G, var, the paths of r to v in any pair of trees are vertex/edge disjoint. Independent
spanning trees (ISTs) provide a number of advantages in data broadcasting due to their fault tolerant
properties. For this reason, some studies have addressed the issue by providing mechanisms for con-
structing independent spanning trees efficiently. In this work, we investigate how to construct inde-
pendent spanning trees on hypercubes, which are generated based upon spanning binomial trees, and
how to use them to predict mitochondrial DNA sequence parts through paths on the hypercube. The
prediction works both for inferring mitochondrial DNA sequences comprised of six bases as well as infer
anomalies that probably should not belong to the mitochondrial DNA standard.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mitochondria occupy a unique position among cellular organ-
isms due to their possession of a separate genome and all enzymes
for translating genetic information into functional proteins. Early
observations suggested that some proteins were also likely to be
encoded in mitochondrial DNA (mtDNA) [1].

The genetic code is the biochemical system for the expression of the
gene. It handles the translation of the information contained in the
DNA and RNAmolecules into protein sequences. Thus, the genetic code
is simultaneously a physiochemical and a communication system.

Dealing with DNA as a communication system, we are inter-
ested in efficient mechanisms of message passing and data
broadcasting. In this sense, independent spanning trees (ISTs) [2–
4] provide several advantages in data broadcasting due to their
resilience to faults. Efficient strategies have been proposed to
construct independent spanning trees [4–6].

In this paper, we investigate how to infer mtDNA sequences
formed by six bases through the topological nature of DNA, as well
as infer what we refer to as anomalies resulting from longest paths
on the hypercube to connect topological neighbors.

The main contribution of the work is to search for patterns on
DNA sequences. We have chosen mitochondrial DNA due to its
simplicity, where the DNA sequence size is small but fully functional.

From the recognition of the patterns over DNA sequences, it is
possible to use them on tasks such as efficient comparison,

compression and reconstruction. Additional to the hypercube pattern
sequences on DNA, reported previously in [7], we successfully pre-
dicted patterns that should not belong to the mitochondrial DNA. As
future steps, we could investigate how those sequences that we
considered as anomalies influence subjects in characteristics
(organism complexity) such as evolutionary mutations and diseases.

The text is organized as follows. In Section 2, we introduce
some preliminaries related to the topic under investigation. In
Section 3, we show how to construct independent spanning trees
over hypercubes. Section 4 presents the DNA patterns investigated
in this work. Section 5 reports and discusses the results obtained
through our methodology. Finally, Section 6 presents the conclu-
sions and directions for future work.

2. Preliminaries

Let G be a graph with n nodes and e edges. A set of spanning
trees rooted at a vertex r of G is said vertex/edge independent if,
for each vertex v of G, var, the paths of r to v in any pair of trees
are vertex/edge disjoint. The following conjecture relates a con-
nected graph and independent spanning trees (ISTs).

Conjecture 2.1. For any k-connected graph G, there exist k inde-
pendent spanning trees (k� ISTs) of G with any vertex v of G as root of
the tree [8].

The conjecture was proved by Itai and Rodeh [9] for k¼2 and
independently proved by Zehavi and Itai [8] and Cheriyan and
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Maheshwari [10] for kr4. However, it is still an open problem for
arbitrary graphs when k44.

Various algorithms have been proposed for some classes of
graphs, such as planar graphs [11], product graphs [12], chordal
rings [9], hypercubes [4,13], folded hypercubes [14], folded hyper-
stars [15], De Brujin and Kautz graphs [16,17], multidimensional
thorus [18], and circulant recursive graphs [19].

The hypercube Qk is a k-regular graph with vertex set equal to
f0;1;…;2k�1g such that there is an edge between two vertices if,
and only if, the binary representations of their numbers differ in
just one bit position.

Before presenting the developed method, it is necessary to
define some terms that will be used throughout this paper, as well
as some conventions proposed here.

Let G¼ ðV ; EÞ be a graph with a vertex set V ¼ fv1;…; vng and an
edge set E, the adjacency matrix MG ¼ ðmijÞ, of the same order of G,
has non-zero value at the value at coordinate i; j (generally value
1 when the graph is not valued) if, and only if, vi and vj have an
edge connecting them, otherwise the value at coordinate i; j is 0. All
matrix coordinates mij satisfying the condition i¼ j have 0 as value.

Fig. 1 shows the adjacency matrices corresponding to the
hypercubes Q1, Q2 and Q3 with 2, 4 and 8 vertices, respectively. The
number in parentheses after each node index represents its binary
representation.

The tensor product of two vector spaces V and W, denoted as
V � W , is a way to create a new vector space, analogous to the
multiplication of integers. For instance

Rn � Rk≊Rnk ð1Þ

In particular

r � Rn≊Rn ð2Þ

where r as a scalar.
Algebraically the vector space V � W is generated by elements

in the form v � w, where the following properties are satisfied for
any scalar α

ðv1þv2Þ � w¼ v1 � wþv2 � w ð3Þ

v � ðw1þw2Þ ¼ v � w1þv � w2 ð4Þ

αðv � wÞ ¼ ðαvÞ � w¼ v � ðαwÞ ð5Þ

A basic consequence of these expressions is

0 � w¼ v � 0¼ 0 ð6Þ

The tensor product is a useful tool that allows the combination
of vector spaces to form larger vector spaces. The tensor product
assists the n-dimensional graph analysis by reducing the scope to a
planar shape in two dimensions, that is, the adjacency matrix.

Let UARm�n and VARp�q. The tensor product, also known as
Kronecker product [20], of U and V is defined in the following
equation:

U � V¼

u1;1V u1;2V … u1;nV
u2;1V u2;2V … u2;nV
⋮ ⋮ ⋱ ⋮
um;1V um;2V … um;nV

2
66664

3
77775ARmp�nq ð7Þ

¼

u1;1v1;1…u1;1v1;q u1;2v1;1…u1;2v1;q … u1;nv1;1…u1;nv1;q
⋱ ⋱ ⋮ ⋱
u1;1vp;1…u1;1vp;q u1;2vp;1…u1;2vp;q … u1;nvp;1…u1;nvp;q
u2;1v1;1…u2;1v1;q u2;2v1;1…u2;2v1;q … u2;nv1;1…u2;nv1;q
⋱ ⋱ ⋮ ⋱
u2;1vp;1…u2;1vp;q u2;2vp;1…u2;2vp;q … u2;nvp;1…u2;nvp;q
⋮ ⋮ ⋮ ⋮
um;1v1;1…um;1v1;q um;2v1;1…um;2v1;q … um;nv1;1…um;nv1;q
⋱ ⋱ ⋮ ⋱
um;1vp;1…um;1vp;q um;2vp;1…um;2vp;q … um;nvp;1…um;nvp;q

2
66666666666666666664

3
77777777777777777775

(8)–(10) illustrate the construction of the Q3 adjacency matrix
using tensor product:

AQk
¼

Xk
i ¼ 0

Ii � R � Ik� i ð8Þ

AQ3
¼

X3
i ¼ 0

Ii � R � Ik� i ð9Þ

AQ3
¼ R � I � Iþ I � R � Iþ I � I � R ð10Þ

where

R¼ 0 1
1 0

� �
I ¼ 1 0

0 1

� �

R � I ¼

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

2
6664

3
7775

R � I � I ¼

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

2
66666666666664

3
77777777777775

Fig. 1. Hypercubes and their corresponding adjacency matrices.
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