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a b s t r a c t

Fetal maturation age assessment based on heart rate variability (HRV) is a predestinated tool in prenatal
diagnosis. To date, almost linear maturation characteristic curves are used in univariate and multivariate
models. Models using complex multivariate maturation characteristic curves are pending.

To address this problem, we use Random Forest (RF) to assess fetal maturation age and compare RF
with linear, multivariate age regression. We include previously developed HRV indices such as traditional
time and frequency domain indices and complexity indices of multiple scales.

We found that fetal maturation was best assessed by complexity indices of short scales and skewness
in state-dependent datasets (quiet sleep, active sleep) as well as in state-independent recordings.
Additionally, increasing fluctuation amplitude contributed to the model in the active sleep state. None of
the traditional linear HRV parameters contributed to the RF models. Compared to linear, multivariate
regression, the mean prediction of gestational age (GA) is more accurate with RF than in linear, multi-
variate regression (quiet state: R2 ¼ 0;617 vs. R2 ¼ 0;461, active state: R2 ¼ 0;521 vs. R2 ¼ 0;436, state
independent: R2 ¼ 0;583 vs. R2 ¼ 0;548).

We conclude that classification and regression tree models such as RF methodology are appropriate
for the evaluation of fetal maturation age. The decisive role of adjustments between different time scales
of complexity may essentially extend previous analysis concepts mainly based on rhythms and univariate
complexity indices. Those system characteristics may have implication for better understanding and
accessibility of the maturating complex autonomic control and its disturbance.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since heart rate patterns are one of the few signals obtainable
from the fetus easily and non-invasively, they are predestinated for
assessing the maturating fetal autonomic control and its dis-
turbances [1–5]. The complex behavior of the maturating fetal
autonomic nervous system (ANS) was recently described by means
of corresponding heart rate variability (HRV) indices. However, the
maturation itself is a complex and non-linear process. Inter-
pretation of non-linear complexity characteristics is ambiguous
and has been discussed with the formation of fetal behavioral
states [6–8]. On the basis of changes in the power spectra, van
Leeuwen et al. showed that maturation is characterized by non-
linear characteristics [9] and different stages of fetal development
were discussed in association with the increasing influence of the

different branches of the ANS [3,10]. However, to date the complex
maturation process was mainly approximated by linear char-
acteristic curves in univariate regression models using linear and
non-linear HRV indices [6,9–11]. The investigation of the perfor-
mance of the best predicting HRV indices in a multivariate model
using non-linear and complex maturation characteristic curves is
pending. Hoyer et al. recently proposed a fetal autonomic brain
age score (fABAS) for the assessment of fetal age, based on MLR
models according to universal developmental characteristics
[12,13]. However, parameter selection for MLR models in these
investigations was based on a pre-selection of HRV indices. Since
even the maturation characteristic curves are not known and they
can be different for different HRV indices, a complex non-linear
approach without pre-setting is required.

With regard to that, classification and regression tree (CART)
methodology such as Random Forest (RF) may provide potential
advantages [14]. The non-linear and complex data structures of RF
provide an ambitious technique for data mining, e.g. in geoinfor-
matics [15,16] or computational biology [17–19]. A direct
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comparison between ordinary linear regression and RF was done
by Nir et al., who investigated the performance of both models for
the assessment of the nociception level under anesthesia [20].
They found that the advanced, non-linear approach performed
better than linear regression. However, a general statement on the
superiority of RF compared to other linear and non-linear models
is limited due to the fact that the accuracy of predictions is biased
by different methodological approaches and results heavily
depend on the underlying problem [21]. With respect to clinical
applications, researchers often try to obtain as much information
as possible from the investigated process. Modeling such processes
with common linear methods requires previous knowledge of
interactions between variables and explicit modeling of non-
linearities. RF as a non-linear, multivariate regression and classi-
fication methodology is able to overcome this problem, even when
values are missing [14]. Additionally, the assessment of the para-
meter importance employed in RF provides a beneficial tool for the
identification of important variables avoiding pre-selection of HRV
parameters on the basis of single characteristic curves. Single
applications of RF to heart rate time series in adults have been
reported with satisfying results, e.g. in connection with sleep state
classification [22], classification of cardiac rhythms [23], risk
stratification for arrhythmic cardiac death [24], or the prediction of
cardiovascular and cerebrovascular events [25]. As far as is known
to the authors, the only application of RF in the context of fetal
development was published by Peterek et al. who classified
pathological, suspect and normal fetal states based on cardioto-
cography (CTG) measurements [26]. However, due to its restricted
temporal resolution, CTG is of limited appropriateness for the
precise assessment of fast heart rate modulation [27]. According to
the “developmental origins of adult disease (Barker) hypothesis”
(also known as fetal programming) [28], the precise evaluation of
the normal development is important with respect to the early
identification of fetal developmental disorders since these have
implications for health problems in later life which cannot com-
pletely be compensated for by later postnatal therapies [29].

The objective of the present work is to evaluate the capability
of a complex maturation model, using previously developed HRV
indices obtained from high resolution fetal magnetocardiographic
(fMCG) recordings and complex maturation functions to predict
fetal gestational age (GA) for the assessment of normal fetal
development. Further, we compare results of GA prediction from
RF methodology with linear, multivariate age regression.

2. Methods

2.1. Subjects

359 fMCG recordings were taken from healthy, singleton fetu-
ses with an age between 21–41 weeks of gestational age (WGA).
Recordings from subjects with intrauterine growth restriction,
non-reassuring non-stress test based on conventional CTG, known
chromosomal abnormalities or congenital abnormalities based on
ultrasound diagnosis, fetal arrhythmia or previous exposure to
synthetic steroids in utero were not considered for analysis.
Additionally, maternal exclusion criteria were: administration of
cardiovascular effective drugs, cardiovascular diseases, diabetes.
The study was approved by the local ethics committee of the
Friedrich Schiller University. All women signed a written, informed
consent form.

2.2. Data acquisition and pre-classification of fetal behavioral states

The fMCG measurements were taken at the Biomagnetic Center
in a magnetically shielded room using the vector-magnetograph

ARGOS 200 (ATB Chieti, Italy). In order to prevent compression of
the inferior vena cava, the pregnant women were positioned
supine with a slight twist to either side. The fetal heart was
localized by sonographic measurements prior to the fMCG
recording. Afterwards, the dewar was positioned contactless as
close as possible to the fetal heart. In the next step, the fMCG-
signal was recorded for 30 min at a sampling rate of 1024 Hz. For
fetal heart beat detection we used an own toolbox [41,42]. Incor-
rectly detected beats (less than 2%) were linearly interpolated
resulting in artifact free normal-to-normal (NN) interval series.
After signal preprocessing (signal preprocessing toolbox, BMDSys,
Jena) the NN interval series were independently pre-classified by
three collaborators into 10-minute state specific heart rate pattern
(HRP), referring to quiet sleep (HRP I, n¼111) and active sleep
(HRP II, n¼248) according to [43]. Pre-classification of these two
HRP was based on the criteria proposed by Schneider et al. [44]
applicable throughout the second half of gestation.According to
the Maternity Guidelines of Germany (FIGO, 2011), the gestational
age was determined based on the history of the last menstrual
period and confirmed by obligatory first trimester ultrasound
screening between 9 and 12 weeks of pregnancy. The ultrasound
results were taken from the maternity documents.

2.3. HRV parameter set

The selection of HRV parameters for multivariate age regression
was based on previous investigations of HRV parameters and their
relation to the fetal development in our own group [3,6,7,
10,12,13,44,33,38,39]. The selected parameter set consisted of
parameters from traditional signal analysis methods in the time-
and frequency domains according to the guidelines of the HRV
Task Force [30], but also included parameters obtained from
methods with a non-linear approach such as multiscale (MSE)
complexity [36], asymmetry [40] and fractal scaling [32] (see
Table 1). Table 1 shows the selected HRV parameters. A more
detailed explanation and their interpretation can be found in
[12,13].

2.4. Regression models

Fetal maturation age was predicted by multivariate linear
regression (MLR) and RF models for each state (HRP I, HRP II) and
for state independent measurements (30 min). The models were
70/30 split sample cross-validated. Model prediction accuracy was
determined by the mean of the corrected coefficient of determi-
nation (R2) from regression of predicted maturation age and real
maturation age in WGA. Forward procedure (stepwise inclusion of
variables while Po0:05) and backward procedure (stepwise
exclusion of variables while P40:1) was used in MLR models.

In RF models, each decision tree of the forest was built by using
a random bootstrap sample of 2/3 of the training set and a ran-
domly selected number of predictorsmtry for splitting at each node
in the tree. The remaining 1/3 samples of the training set (out-of-
bag samples, OOB) were used to calculate an unbiased prediction
error OOBerror which allowed to validate the model accuracy
during training and to calculate absolute values of parameter
importance. Relative parameter importance is calculated as the
increase in prediction error if the values of the parameter are
permuted across the OOB-observations. The more the prediction
error increases, the more important is the particular parameter.
This relative importance is computed for every tree and averaged
and divided by the standard deviation over the entire ensemble.
Relative parameter importance was used to define the final para-
meter set in the RF model: The parameters with the smallest
parameter importance were stepwise discarded and afterwards
the OOBerror calculated. The final parameter set was the one
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