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a b s t r a c t

In this paper, mathematical simulation of bioheat transfer phenomenon within the living tissue is
studied using the thermal wave model. Three different sources that have therapeutic applications in
laser surgery, cornea laser heating and cancer hyperthermia are used. Spatial and transient heating
source, on the skin surface and inside biological body, are considered by using step heating, sinusoidal
and constant heating. Mathematical simulations describe a non-Fourier process. Exact solution for the
corresponding non-Fourier bioheat transfer model that has time lag in its heat flux is proposed using
strongly continuous semigroup theory in conjunction with variational methods. The abstract differential
equation, infinitesimal generator and corresponding strongly continuous semigroup are proposed. It is
proved that related semigroup is a contraction semigroup and is exponentially stable. Mathematical
simulations are done for skin burning and thermal therapy in 10 different models and the related
solutions are depicted. Unlike numerical solutions, which suffer from uncertain physical results,
proposed analytical solutions do not have unwanted numerical oscillations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, temperature predictions for living tissues have
great attraction due to its significance in basic and clinical
sciences. The thermal wave model of bioheat transfer in living
tissues reduces to one differential equation (for example see:
[1,2]). Although this phenomenon is three-dimensional (3D), for
many researchers the depth effects of the heat propagation is a
matter of importance. Thus, without loss of generality, one can
assume the heat energy propagation along the direction perpen-
dicular to the skin surface. Liu et al. [3] introduced the thermal
wave model to investigate physical mechanisms and the beha-
viours in living tissues. Traditionally, finite difference, boundary
element and finite element methods are used [4–8] to model and
solve different bioheat transfer problems numerically. However, if
both closed form analytical and numerical solutions exist, the
analytical one is preferred, since it does not depend on the
dimensions of the problem. Moreover, in contrast to numerical
solutions the analytical solutions are not depended on the pre-
vious grids in the domain. But for most of the numerical solutions
of thermal wave model there are oscillations that are hard to
dampen [9–11] and these solutions are physically doubtful results
for the temperature prediction at the pulse surface heat flux. It is

for these reasons that we aimed in this paper to present several
closed form analytical solutions to the thermal wave model of
bioheat transfer under different types of boundary conditions. Up
to now, Haji-Sheikh et al. described a method of solution of the
thermal wave equation in finite bodies using Green's functions
[12]. Ahmadikia et al. [13–15] derived the solution of the hyper-
bolic heat equation using the Laplace transform. This paper deals
with the closed analytical form solution of the thermal wave
equation based on strongly continuous semigroup (C0-semigroup)
theory. Proposed general solutions in this paper work for different
kinds of source terms. Therefore, they are flexible in calculating
the temperature distribution for various practical problems in skin
burning and hyperthermia. Furthermore, the C0-semigroup solu-
tion is capable to dealing with the transient or space-dependent
boundary conditions. In the recent years, Malek et al. [16,17] have
performed several closed forms of analytical solutions for Pennes'
and dual phase lag equation using C0-semigroup theory. By
semigroup theory, an infinitesimal generator is used to establish
the abstract differential equation related to the original thermal
wave equation. The main results consist of computing eigenvalues
and proof for the well-posedness of related operator. It is proved
that an infinitesimal generator is Riesz spectral operator and the
corresponding system is exponentially stable.

The paper is organized as follows: in Section 2 mathematics
formulation for thermal wave equation under generalized boundary
conditions are described. In Section 3 semigroup formulation and
closed analytical form solution are achieved. The mathematical
simulation results based on semigroup theories derived for four
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different boundary conditions in Section 4. Concluding remarks are
given in Section 5.

2. Mathematical formulation

In order to study thermal behaviour in living tissues, several
models describing bioheat transfer have been developed [18].
Most of the thermal medical practices are based on the well-
known Pennes' equation. It is based on an infinitely fast propaga-
tion of temperature disturbance (Fourier's law). In contrast with
Fourier's constitutive law, a modified flux model based on the
finite speed of propagation of heat in the living body was
suggested [19,20]. The assumption of finite speed wave propaga-
tion does not obey in the classical Fourier's law. The thermal wave
theory based on non-Fourier's law can be derived from

qð r!; tþτqÞ ¼ �k∇Tð r!; tÞ ð1Þ
where t is the time, k is the thermal conductivity, q is the heat flux,
∇T is the temperature gradient, r!¼ ðx; y; zÞ is three-dimensional
position vector in which z stands for the tissue depth. The
relaxation time is τq ¼ α=C2 where α is the thermal diffusivity
and C stands for the heat propagation velocity. In contrast with
common metals the relaxation time for heating processes is much
longer than 10�8 s [10]. For the processed meat Mitra et al. [21]
took τq ¼ 15 s, while in Refs. [22,23] it is shown that τq is in the
range of 20–30 s for biological bodies. Pennes' bioheat transfer
equation is [24]

�∇qþwbcbðTb�TÞþQmþQr ¼ ρc
∂T
∂t
: ð2Þ

Here, ρ, c and T denote density, specific heat and temperature of
tissue, respectively. cb and wb are the specific heat and perfusion
rate of blood respectively. Qm is the metabolic heat generation and
Qr is the heat source for spatial heating. Tb is the arterial
temperature and was regarded as a constant. Applying the first-
order Taylor's series expansion to Eq. (1) leads to

qð r!; tÞþτq
∂qð r!; tÞ

∂t
¼ �k∇Tð r!; tÞ: ð3Þ

By taking the gradient with respect to r on both sides of (3) and
substitute in (2) one can write

∇ � ðk∇TÞþwbcbðTb�TÞþQmþQr

þτq �wbcb
∂T
∂t

þ∂Qm

∂t
þ∂Qr

∂t

� �
¼ ρc τq

∂2T
∂t2

þ∂T
∂t

� �
: ð4Þ

This hyperbolic heat transfer equation is more complicated than
Pennes' equation (2) since for τq ¼ 0, Eq. (4) reduces to Eq. (2). For
constant thermal parameters k;Qm the z-direction form of Eq. (4)
is

k
∂2T
∂z2

þwbcbðTb�TÞþQmþQrþτq �wbcb
∂T
∂t

þ∂Qr

∂t

� �

¼ ρc τq
∂2T
∂t2

þ∂T
∂t

� �
: ð5Þ

In order to solve this equation we take

Tðz;0Þ ¼ T0ðzÞ and
∂Tðz; tÞ

∂t

����
t ¼ 0

¼ 0; ð6Þ

in which T0ðzÞ for every zA ½0; l� is the solution of the following
ordinary differential equation [25]:

k
d2T0ðzÞ
dz2

þwbcbðTb�T0ðzÞÞþQm ¼ 0

�k
dT0ðzÞ
dz

¼ h0ðTf �T0ðzÞÞ; z¼ 0;

T0ðzÞ ¼ Tc; z¼ l; ð7Þ
where Tðz;0Þ ¼ T0ðzÞ is the initial heat value at starting, Tf is the
ambient temperature, h0 is the coefficient corresponding to the
ambient and skin surface temperature and Tc is the body core
temperature at z¼ l. The closed form analytical solution for Eq. (7)
can be written as

T0ðzÞ ¼ Tbþ
Qm

wbcb
þ

Tc�Tb�
Qm

wbcb

� � ffiffiffi
A

p
cosh ð

ffiffiffi
A

p
zÞþh0

k
sinh ð

ffiffiffi
A

p
zÞ

� �
ffiffiffi
A
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A

p
lÞþh0
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þ
h0
k
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ffiffiffi
A

p
ðl�zÞÞ

ffiffiffi
A

p
coshð

ffiffiffi
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sinhð
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p
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; ð8Þ

where A¼wbcb=k.
In practice, different types of boundary conditions (BCs) may be

considered with Eq. (5) and initial conditions (6): (a) a transient
surface heat flux, (b) a surface and body core heating, (c) a cooling
medium on tissue surface, (d) a surface heating with body core
heat flux, which can be generalized as

�k
∂Tðz; tÞ

∂z

����
z ¼ 0

¼ f 0ðtÞ; Tðl; tÞ ¼ Tc; ð9aÞ

Fig. 1. Schematic of a tissue model: (a) skin burns by the tissue surface heating. (b) Hyperthermia by the point heating power, heat is deposited through inserting a heating
probe in the center of tumor site (z¼ z0).
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