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a b s t r a c t

Compared with the Monte Carlo method, the population density method is efficient for modeling
collective dynamics of neuronal populations in human brain. In this method, a population density function
describes the probabilistic distribution of states of all neurons in the population and it is governed by a
hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite
difference method. In a previous study, a continuous Galerkin finite element method was found better
than the finite difference method for solving the hyperbolic partial differential equation; however, the
population density function often has discontinuity and both methods suffer from a numerical stability
problem. The goal of this study is to improve the numerical stability of the solution using discontinuous
Galerkin finite element method. To test the performance of the new approach, interaction of a population
of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results
showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo
methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem
could be resolved using the discontinuous Galerkin finite element method which has total-variation-
diminishing property. The efficient approach will be employed to simulate the electroencephalogram or
dynamics of thalamocortical network which involves three populations, namely, thalamic reticular
neurons, thalamocortical neurons and cortical pyramidal neurons.

& 2014 Published by Elsevier Ltd.

1. Introduction

To simulate brain activities, it is necessary to develop an efficient
and effective modeling method because information in the brain is
processed in large-scale neuronal networks across many functionally
specialized areas, each of which has a myriad number of intercon-
nected neurons [1]. The population density method is developed for
this purpose, in which neurons in a large scale neuronal network are
grouped into neuronal populations based on the types of neurons’
dynamics, and each neuronal population has its own population
density function (PDF) representing the distribution of states of
all neurons in the population [2,3]. Such a method can serve as a
computational tool to efficiently evaluate the population dynamics

of a neuronal population consisted of homogeneous yet slightly
different neurons by using statistical information of their state
variables. In addition, it can also serve as a theoretical method to
explore the dynamics of a large-scale neuronal system consisted of
heterogeneous neurons through the interaction arising from sub-
populations consisted of homogeneous neurons [4,5]. In contrast to
neural mass models [6–8], the relationship between the brain
activity and the specific dynamics of neurons can be built based
on the model of individual neurons in PDF. It is believed that the
population density method is applicable for investigating generation
mechanisms of many brain activities. To trace the population
dynamics, the hyperbolic partial differential equation (PDE), that is,
the governing equation of the PDF, has to be solved to obtain the
time evolution of the PDF.

Up to now, two common types of neuronal models are used in the
population density approach to model large-scale neuronal networks
in the brain. One of them is the leaky integrate-and-fire (LIF) model
that can simulate the tonic firing mode of cortical pyramidal neurons
[9]. By neglecting the induced dynamics of presynaptic inputs, the
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governing equation of LIF model can be simplified to a one-
dimensional hyperbolic PDE [4,5]. The other is the leaky integrate-
and-fire-or-burst (LIFB) model that can simulate the transition
between the tonic and the burst firing modes manifested by thalamic
neurons [10]. Similarly, by neglecting the induced dynamics of
presynaptic inputs, the governing equation of LIFB model can be
simplified to a two-dimensional hyperbolic PDE [11]. Unfortunately,
even for the one-dimensional governing equation, solutions of the
above models are intractable by analytic methods due to its high
nonlinearity.

Numerical schemes are usually used to solve the governing
equation, especially the finite difference methods [4,5] or finite
volume methods [11]. The finite element method (FEM) had never
been utilized until we proposed the continuous Galerkin FEM in our
previous work [12]. It was concluded that the continuous Galerkin
FEM has higher computational efficiency and lower discretization
error when compared with the finite difference method. In addi-
tion, the geometrical flexibility of FEM is critical to deal with
sophisticated neuron models that usually have complicated geo-
metries within the computational domain. However, it lacks the
property of so-called total variation diminishing so that it becomes
unstable when the solution of the governing equation exhibits
sharp variation within a small spatial interval or even discontinuity
[13,14]. For the LIFB model, the solution could be discontinuous
along a certain dimension if one state variable lost its dynamical
behavior. As a result, an alternative numerical scheme must include
the total-variation-diminishing property.

In this work, the discontinuous Galerkin FEM is used because it
possesses the total-variation-diminishing property and, meanwhile,
reserves the advantages of the continuous Galerkin FEM [15]. In the
discontinuous Galerkin FEM, the continuity of solution values at inter-
boundaries between meshes is released, and the total-variation-
diminishing property is maintained by using a slope limiter. Addi-
tionally, the discontinuous Galerkin FEM allows parallel computing to
increase computational efficiency [16]. So, in terms of the character-
istics of lower discretization error, higher geometry flexibility, super-
ior computational efficiency and parallel computing, it is believed that
the discontinuous Galerkin FEM is a promising approach in solving
the governing equation of the PDF. The goal of this work is to
formulate the discontinuous Galerkin FEM and apply it to solve two
populations in a neuronal network, namely, the cortical pyramidal
and the thalamic neuron populations. The results will be compared
with those obtained from the Monte Carlo method. Convergence and
accuracy of solution and numerical stability of the discontinuous
Galerkin FEM will be discussed.

The structure of this article is as follows: In section 2, two
governing equations derived from the LIF and LIFB models are
introduced. In section 3, the implemented algorithms of the
discontinuous Galerkin FEM are presented for solving governing
equations of LIF and LIFB models. In section 4, dynamical behaviors
of neuronal populations are simulated to demonstrate the con-
vergence and accuracy of the discontinuous Galerkin FEM. Discus-
sion and conclusions are, respectively, presented in section 5 and
section 6.

2. Governing equations

The first step of simulating neuronal population dynamics by
means of the population density method is to derive the neuronal
model that describes how action potentials (spikes) are generated
in a neuron. After deriving the neuronal models, the governing
equations based on these neuronal models are described, and the
implemented algorithm of the discontinuous Galerkin FEM will be
presented in the next section.

2.1. Leaky integrate-and-fire (LIF) model for cortical pyramidal
neurons

The LIF model is formulated by[17]

C _V ¼ �gl V�Elð ÞþS tð Þ

if VZVth; then V-Vr ð1Þ

where C is the capacitance of the neuronal membrane; V(t) is the
membrane potential of neurons; El and gl are respectively the
constant of reversal potential and conductance of the leakage
channel. In this model, the time variation of V is affected by the
leakage current (the first term on the right side) and the current S
(t), that is, so-called post-synaptic current, induced by the pre-
synaptic spike train. V is immediately reset to the resetting
voltage, Vr, if it reaches the threshold voltage, Vth, and a spike is
marked at that time moment.

Fig. 1 explains idea of the population density method using the
LIF model as an example. The basic concept of the population
density method comes from statistical mechanics [4], especi-
ally that for describing macroscopic states of an ensemble of
N-particles [18]. Imagine that the alteration in the states of
neurons within an individual neuronal population corresponds
to the movement of particles in a space. Thus PDF, ρ(x, t),
represents the probability density of neurons' clustering at a given
state point, x, within an enclosed state space and at a specific time
moment, t. Then, the macroscopic states of a neuronal population
can be obtained using ensemble averages if its PDF is known and
its dynamics is the time variation of those macroscopic states. The
PDF must be known as time goes so it is necessary to solve the
governing equation that describes time variation of the PDF and it
is derived from conservation of total number of neurons within an
individual neuronal population.

For a population of cortical pyramidal neurons, the governing
equation of the PDF, ρ V ; tð Þ, based on the LIF model and ignorance
of the dynamics of S(t) is given by [4]

∂
∂t
ρ V ; tð Þ ¼ � ∂

∂V
�1
τ

V�Elð Þρ
� �

�σ tð Þρ V ; tð Þ

þσ tð Þρ V�ε; tð Þþr tð Þδ V�Vrð Þ; ð2Þ

where time constant τ¼ C=gl, σ(t) (unit: pulse per second, pps) is
the time-dependent mean rate of presynaptic spike train to each
neuron and ε is the voltage change due to a presynaptic spike. The
mean firing rate, r(t), of the neuronal population is defined as the
number of neurons whose membrane potentials cross the
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Fig. 1. Systematic illustration of population density method based on the LIF
model. In this method, alteration of neurons' states caused by leaky and post-
synaptic currents are imagined as moving particles in a virtue state space which
becomes one-dimensional and is enclosed by two boundary points, El and Vth,

respectively, if neglecting the dynamics of post-synaptic currents[4,5]. The popula-
tion density function, ρ V ; tð Þ, in which the membrane potential, V, is the unique
state variable, represents the distribution of neurons in that space. The average
number of neurons that cross the threshold voltage, Vth, per unit time is the instant
mean firing rate of this neuronal population, r(t). The neurons whose states have
been across Vth re-enter the state space via the resetting voltage Vr. The ensemble
average, V , represents the macroscopic state of this neuronal population.
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