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a b s t r a c t

In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography
(CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization,
both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data
fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this
work is to determine iterative parameters automatically from data, thus avoiding tedious manual
parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted
according to the difference from POCS update in either the projection domain or the image domain,
while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data
noise level. In addition, projection errors are used to compare with the error bound to decide whether to
perform ART so as to reduce computational costs. The performance of the proposed methods is studied
and evaluated using both simulated and physical phantom data. Our methods with automatic parameter
tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage
algorithm.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

X-ray computed tomography (CT) is an imaging technique
widely used for medical diagnosis and treatments [1]. Due to
potential risk of inducing secondary cancers, it is desirable to
reduce radiation doses of X-ray CT imaging (e.g. fewer projection
views, less angular coverage and lower incident X-ray intensity)
[2]. For CT reconstruction with limited data, iterative reconstruc-
tion (IR) methods have demonstrated their capability of producing
high quality images [3,4]. Thanks to advances of computer hard-
ware and reconstruction algorithms, IR for CT has become a
realistic approach in clinic practice [5].

One advantage of IR methods is that prior information can be
incorporated with the imaging models, which can further improve
reconstruction qualities [6–9]. In the past few years IR methods
regularized by sparsity priors have been investigated [10–12]. One
common approach is to minimize the total variation (TV), which is
based on assumption of image sparsity in the gradient domain
[13]. The nonlinear TV regularization can reduce noise while
somewhat preserving edges of CT images.

Many iterative algorithms have been developed for regularized
CT reconstruction [9,14–16]. A two-stage reconstruction approach

was utilized in [17] where the data fidelity condition and prior
constraints were enforced onto images separately. The same strategy
was also adopted in TV regularized reconstruction [18–20]. In these
iterative approaches, data fidelity constraints were enforced using
the algebraic reconstruction technique (ART) and the TV objective
was minimized using steepest descent or other optimization meth-
ods. To balance the two operations, a set of empirical parameters
were introduced to adjust the contributions of the ART and TV
optimization in [18]. However, one disadvantage of these iterative
methods is that the parameters, such as step sizes, usually need to be
manually tuned to achieve quick and convergent reconstruction and
good image quality under different imaging conditions. Since this
manual tuning process is tedious and time consuming, an automatic
determination of reconstruction parameters for predictable results is
highly desirable, which is the focus of this work.

For this purpose, a non-parametric control method was pro-
posed to adjust the TV step size according to changes in the
projection domain [21]. In this work, we propose to determine all
iterative parameters automatically from data to avoid tedious
manual parameter tuning. In TV minimization, the step sizes of
steepest descent are adaptively adjusted according to the differ-
ence from POCS update in either the projection domain (projec-
tion controlled steepest descent, “PCSD”) or the image domain
(image controlled steepest descent, “ICSD”), while the step size of
the ART in POCS is determined based on the data noise level.
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Furthermore, in two-stage approaches, the projections of the
reconstructed image need to compare with the observed data to
determine certain parameters [18]. This requires one full forward
projection in addition to the forward and backward projections of
the ART for each iteration. In this paper we utilize a novel
mechanism to reduce the computational cost of two-stage CT
reconstruction by skipping the ART operation for the data
fidelity constraint when the projection error is not greater than
a predefined error bound.

The rest of this paper is organized as follows. The objective
function for X-ray CT reconstruction is provided in Section 2. The
new adaptive iterative reconstruction algorithms are proposed in
Section 3. In Section 4, performances of the proposed algorithms
are evaluated using both simulated and real data. Discussion and
conclusion are given in Section 5.

2. Constrained TV optimization for CT reconstruction

Given the system matrix M, reconstruction of X-ray CT image x,
i.e. linear attenuation coefficient map, can be represented as
optimization of the following regularized least-square model,

xn ¼min
x

1
2
‖Mx�p‖2þβ‖x‖TV

� �
; ð1Þ

where the first term in the model is a data fidelity term, p is the
projection data whose element pi is the logarithm of inversely
normalized measured data on ith detector bin, and the second
total variation (TV) term enforces edge-preserving smoothness
penalty on reconstructed images [13]. TV is usually defined as,

‖x‖TV ¼∑
u;v

ð∇xÞu;v
�� ��; ð2Þ

where ∇x is the gradient vector of x. Its element ð∇xÞu;v ¼ ðð∇xÞu;
ð∇xÞvÞ with ð∇xÞu ¼ xuþ1;v�xu;v and ð∇xÞv ¼ xu;vþ1�xu;v. ð∇xÞu;v

�� �� is
defined as,

ð∇xÞu;v
�� ��¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð∇xÞuÞ2þðð∇xÞvÞ2þδ

q
; ð3Þ

where δ is a small positive constant to smooth the non-
differentiable TV norm as proposed in [10].

Eq. (1) is an unconstrained convex optimization problem and can
be solved by well-established optimization techniques, such as
conjugate gradient [19] and the first order primal dual methods
[22]. However, the solution of Eq. (1) varies depending on the value
of β that balances the contributions between TV and data fidelity
terms. There is no straightforward way to determine its value for
the optimal reconstruction other than trial-and-error tests. In this
work, we focus on the parameter determination by treating sparse-
view CT reconstruction as a constrained optimization as follows:

xn ¼min
x

‖x‖TV subject to ‖Mx�p‖2rє: ð4Þ

In this from, the objective is a TV minimization problem
constrained by a data fidelity term in the projection domain. The
parameter є defines a certain amount of data error allowed
between predicted and observed projection data due to noise
and modeling errors, so called the “error bound” parameter. It is
noted that there is an equivalence between the objective functions
(1) and (4) when є is not equal to zero. Nevertheless, the automatic
determination of є can be achieved using the projection data, thus
avoiding the difficulty of the selection of β. For a well-calibrated CT
system and well-compensated projection data, є is dominated by
the photon counting noise obeying Poisson distribution. Thus, an
appropriate value for є can be determined using the method
proposed in [23]. The method approximates the noise variance
of the measurement yi for the line integral along the ith ray, the

received X-ray intensities on the ith pixel of detectors,

єi ¼
1
yi
: ð5Þ

Given incident photon intensity y0, pi ¼ lnðy0=yiÞ based on the
Beer’s law. є is then estimated as the summation over all projec-
tions

є¼∑
i
єi: ð6Þ

In practice, a non-negative constraint on image pixels (linear
attenuation coefficients) is also introduced and leads to the
following constrained optimization problem,

xn ¼ arg min ‖x‖TV subject to ‖Mx�p‖2rє and xZ0; ð7Þ

3. The reconstruction algorithms

The constrained optimization problem can be solved using a
two-stage framework: (1) the enforcement of data fidelity and non-
negativity constraints, and (2) the minimization of TV [10]. Two
operations are iterated in alternation to achieve the optimal
solution. Projection onto convex sets (POCS) is used at the first
stage by treating constraint sets as convex sets and selecting a
feasible image through projections onto these sets. Iterative meth-
ods such as steepest descent can be applied for TV optimization.
Such TV-POCS approaches usually include two loops of iteration: a
main loop of POCS and a sub-loop of TV optimization. The
parameters that control the step sizes of POCS and TV minimization
are important for a well-behaved iterative reconstruction. In this
work, we proposed automatic approaches to determine these
parameters to avoid tedious trial-and-error parameter tuning.

3.1. Projection onto convex sets (POCS) of constraints

In the POCS stage, the feasible solution of data fidelity term can
be obtained using the algebraic reconstruction technique (ART).
For the ith ray of X-ray CT, the original ART from an initial point xs
is the pure projection Pxs onto the hyperplane defined by
mix�pi ¼ 0,

x¼ Pxs ¼ xsþ 1
‖mi‖2

pi�mixs
� �

mT
i ; ð8Þ

where mi is the ith row of the system matrix M. The original
projection form of ART is suitable for noiseless data where the set
of linear equations is consistent. To accommodate noisy data
fidelity constraint, a relaxed projection form of ART is introduced,

x¼ ð1�λiÞxsþλiPxs ¼ xsþ λi
‖mi‖2

pi�mixs
� �

mT
i ; ð9Þ

where λi is the relaxation parameter [24].
In this study we proposed to determine the relaxation para-

meter according to the noise level of X-ray photon detection,
whose variance can be approximated as the inverse of the
detected counts shown in Eq. (5) [25–27]. Specifically, the relaxa-
tion parameter can be defined as the normalized X-ray intensities,

λi ¼
ffiffiffiffiffi
yi
y0

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð�piÞ

p
: ð10Þ

As can be seen, λi is confined between [0, 1]. Geometrically, the
relaxed point x can be interpreted as an interior point on the line
segment from the initial point xs to the projection Pxs, and λi is a
weight of projection point. When the projection data has the
lowest noise level, i.e. yi¼y0 or no attenuation, λi ¼ 1 will lead to
the pure projection Pxs. On the other hand, to account for the
variability of the observation pi, the relaxation parameter λi will
relax the projection to ð1�λiÞxsþλiPxs. The higher the noise level,
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