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Permutation entropy is computationally efficient, robust to outliers, and effective to measure complexity
of time series. We used this technique to quantify the complexity of continuous vital signs recorded from
patients with traumatic brain injury (TBI). Using permutation entropy calculated from early vital signs
(initial 10-20% of patient hospital stay time), we built classifiers to predict in-hospital mortality and
mobility, measured by 3-month Extended Glasgow Outcome Score (GOSE). Sixty patients with severe TBI
produced a skewed dataset that we evaluated for accuracy, sensitivity and specificity. The overall
prediction accuracy achieved 91.67% for mortality, and 76.67% for 3-month GOSE in testing datasets,
using the leave-one-out cross validation. We also applied Receiver Operating Characteristic analysis to
compare classifiers built from different learning methods. Those results support the applicability of
permutation entropy in analyzing the dynamic behavior of TBI vital signs for early prediction of

Keywords:
Permutation entropy
Ordinal pattern
Traumatic brain injury
Vital signs

Prediction

mortality and long-term patient outcomes.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Traumatic brain injury (TBI) is the most common cause of
admission to emergency care and trauma-related death in the U.S.
civilian population and is a major cause of death and disability in
combat causalities [1,2]. In most modern intensive care units
(ICUs), vital signs (VS), such as heart rate (HR), blood pressure
(BP), and oxygen saturation (SpO2), among others, are collected in
high-quality, automated, continuous electronic data streams, as
sequential assessments of important physiological functions, pro-
viding basic evidence of patients’ status. Because VS are an early
warning system of physiologic perturbation, they are usually
recorded hourly in the ICU setting. However, in most modern
ICUs, the massive quantities of high-quality data produced create
both a challenge to store, analyze, and interpret and an opportu-
nity to explore novel advanced analytic methods for predicting
outcomes. Such predictive algorithms can support advanced
instrumentation and decision-assist tools that have the potential
to significantly improve clinical outcome for these very ill patients.
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To discover the intrinsic patterns that characterize continuous,
multivariate, clinical time series, a variety of methods can be used,
such as entropy, auto-correlation, autoregressive models, and
structure models [3]. One strategy is to embed the time series
into higher dimensional space and then compute various entropies
for the elements of the embedded time series. Conventional
entropies such as Shannon entropy, Rényi entropy and Tsallis
entropy can be calculated given the distribution of elements of
the embedded time series. The Rényi entropy of a time series has
been used to detect spatially varying multivariate relationships [4]
and to study brain injuries [5] and heart rate variability [6,7]. The
Tsallis entropy of the elements of a time series has been used to
monitor brain injuries after cardiac arrests [8], and to improve the
accuracy of gene regulatory networks inference [9].

Bandt and Pompe [10] introduced permutation entropy as a new
measure of complexity of non-linear time series. Zanin et al. [11]
provide an extensive review of various biomedical applications of
permutation entropy. Permutation entropy has been used to predict
the onset of epileptic episodes from EEG data by considering
changes in the permutation entropy of the EEG time series over
time [12,13]. Veisi et al. [14] find that permutation entropy can be
used to effectively classify EEG signals into normal vs. epileptic with
an accuracy of 85% even for highly noisy EEG. Physiologically,
epileptic episodes/symptoms are manifested with deterministic
behavior of the EEG signals, while healthy states are characterized
by higher non-chaotic state variability [7]. Permutation entropy has
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also been used to study sleep using EEGs [15,16], to identify motifs
in the EEG signals of patients given fast acting anesthetic drugs
[17,18], and to identify temporal gene expression profiles [19]. Bian
et al. [20] use permutation entropy to identify heart rate variability
under different physiological conditions. Berg et al. [21] use ordinal
patterns of beat-to-beat heart rate variability from an EKG signals of
40 patients who suffered from myocardial infraction, and try to
classify them based on whether they survived for more than two
years or not. They achieve a classification accuracy of 85%. Permuta-
tion entropy can also highlight forbidden patterns: state-space
patterns/permutations appear very infrequently or not at all [22].
It can also be used to quantify non-linear interactions among time
series by considering the relative entropy of the joint Takens
embeddings of such time series versus the product of independent
Takens embeddings [23].

In this research effort, we use permutation entropy to derive
features from continuous, multivariate, time series for outcome
prediction of patients with severe TBI. The remainder of this paper
is organized as follows. In Section 2, we briefly introduce the
permutation entropy and the entropy map that we used for
quantifying the characteristics of the dynamic system. We use
different independence tests to assist in variable selection. In
Section 3, we describe the dataset and experiment design. We
apply the permutation entropy to predict mortality and 3-month
Extended Glasgow Outcomes Scale (GOSE), and present experi-
ment results, evaluated by accuracy and the area under the
receiver operating characteristic (ROC) curve. We conduct preli-
minary interpretation of ordinal patterns derived from the VS.
Finally, in Section 4, we discuss and summarize the results.

2. Method
2.1. Ordinal patterns and permutation entropy

We assume that the physiological status of living things is
dynamic but has identifiable and repeated patterns. Likewise, we
assume that these patterns will be different in the healthy, injured,
and/or ill individuals and that the patterns will be discernibly
different from each other. For instance, if the patient is also losing
blood, blood pressure (BP) will fall. Heart rate (HR) increases to
compensate for the decreased BP to ensure adequate circulation
and oxygenation of the brain, and the increase in HR usually
increases the BP, at least temporarily. If blood loss continues, BP
falls, and clinicians will usually give fluid, including blood, to raise
the BP and ensure adequate oxygenation. These changing patterns
of HR and BP are accompanied by changes in intracranial pressure
(ICP), cerebral perfusion pressure (CPP), and so on.

Bandt and Pompe [10,24] suggested an approach to time series
analysis in which they embedded a continuous time series as a
symbolic sequence into another space, a process which they called
“permutation entropy”. One major ingredient of permutation
entropy is the ordinal pattern. The ordinal pattern of a sequence

of elements Xxq, ..., X, is the permutation (re-arrangement)
7 = (i1, iz, ...,ip) that sorts the amplitude values in ascending order
so that x;, <x;, <,..., <X;,.

The order L permutation entropy of a time series x; _n i
calculated as follows. Let 7; be the ordinal pattern (i.e. the sorting
permutation) for the segment of the time series under the sliding
window of length L that ends at x; i.e. the subsequence
Xt_L[41,---» Xt. Let Sp = {7} be the set of all those unique (alphabet)
ordinal patterns z;. The time series x;__y corresponds to the
sequence (z;:t=L,...,N) of N—L+1 ordinal patterns from the
alphabet S;. The entropy of this sequence of ordinal patterns is
the permutation entropy of the time series x; _n. For example, the

Shannon permutation entropy is defined in (1),
Hp = - Z P(ry)log (P(7y)), @)

T eSL
where P(m;) is the frequency of z;, in the sequence (x;). In the
work presented here, we use the Rényi entropy with parameter o
of the sequence (x;) defined as
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The parameter a in the Rényi entropy acts as a selector of
probabilities. It assigns almost equal weight to each possible
probability when « is sufficiently close to zero. When « is larger,
it puts more weight on higher probabilities. We can use this
parameter to assign different weights on events of different
probabilities.

2.1.1. Theoretical foundations of permutation entropy

The idea of permutation entropy, introduced by Bandt and
Pompe [10,24], relies on a large body of previous work on using
information theory to study the phase space (state-space) of
dynamical systems [23]. For example, the Kolmogorov-Sinai (KS)
entropy is used extensively to characterize the probability dis-
tributions (random processes) induced by finite partitions of the
state-space of dynamical systems [23,25].

The underlying distribution of the states is an invariant
measure of a dynamical system (invariant under smooth transfor-
mations of the state space), while entropy functions provide us
with a way to compare such distributions. Due to the intractability
in deriving explicit analytic expressions of the state distributions,
researchers have resorted to numerical estimates from the data. To
this end, of particular importance is the Takens-Whitney delay
embedding and reconstruction theorem [23] that relates the
dimension d of the system’s attractor and the dimension (2d+1)
of the embedding space that is sufficient to reconstruct those
properties of the system’s attractor that are invariant under
smooth transformations. Characterizing the attractor of a dynami-
cal system enables us to predict the system’s long-term behavior
(since the attractor contains all states that are mapped by the
system back into a state in the attractor). The Takens-Whitney
theorem provides an effective way to estimate the dimension of
the attractor by estimating the Kolmogorov-Sinai entropy of an
embedding of a system’s state-space.

One particular partition of the space of a Takens delay embed-
ding is obtained via permutations as follows. Consider for simpli-
city a univariate discrete-time time series x;, and its Takens delay
embedding of order m with delay lag 7 Xi= (X—m+1)e
..sXt—z,,Xr) € R™. Partition the space R™ into m! subsets, each
labeled by a unique permutation 7 of [1,...,m], with each subset
containing all points in R™ that can be sorted by the subset’s
labeling permutation.

Permutation-based partitions are more robust to noise and
other non-linear distortions and artifacts than value-based fixed-
size partitions of the state space, since they depend on the relative
order rather than the exact values of the time series. Furthermore,
in order to obtain reliable entropy estimates with fixed-size
partitions, one needs long time series (in the order of 2™ in order
to cover all blocks of such fixed-size partitions); permutation-
based entropy estimates do not require long time series. The
robustness of permutation entropy makes it particularly attractive
for mining vital signs collected in real clinical settings, without
expensive pre-processing and cleaning of such signals.

Recall that the uniform distribution has maximum entropy
among discrete distributions of bounded support. Large values of
permutation entropies correspond to dynamical systems with
substantial uncertainty/randomness (divergence in time of initially
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