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a b s t r a c t

Nowadays, processing medical images is increasingly done through using digital imagery and custom
software solutions. The distributed algorithm presented in this paper is used to detect special tissue
parts, the nuclei on haematoxylin and eosin stained colon tissue sample images. The main aim of this
work is the development of a new data-parallel region growing algorithm that can be implemented even
in an environment using multiple video accelerators. This new method has three levels of parallelism:
(a) the parallel region growing itself, (b) starting more region growing in the device, and (c) using more
than one accelerator. We use the split-and-merge technique based on our already existing data-parallel
cell nuclei segmentation algorithm extended with a fast, backtracking-based, non-overlapping cell filter
method. This extension does not cause significant degradation of the accuracy; the results are practically
the same as those of the original sequential region growing method. However, as expected, using more
devices usually means that less time is needed to process the tissue image; in the case of the
configuration of one central processing unit and two graphics cards, the average speed-up is about
4–6� . The implemented algorithm has the additional advantage of efficiently processing very large
images with high memory requirements.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, digital microscopes are becoming increasingly pop-
ular among pathologists. The processing of microscopic tissue
images and the segmentation of tissue components are now done
through digital imagery and special immunodiagnostic software
products [1]. These are fast and accurate products and can serve
several additional functions, like remote access, archiving [2,3],
searching and tagging [4], semi-automatic diagnostics [5–7],
registration [8], computer-aided tissue engineering [9], etc. This
kind of processing offers a very promising way of using different
segmentation techniques with the images received; this way, the
different components of the tissues can be separated effectively.
Appropriately, precise recognition of the tissue components would
provide a safe background for automated status analysis of the
examined patients, or at least promote the work of pathologists
with this pre-processing.

Our work focuses on the segmentation of images containing
haematoxylin and eosin (HE) stained colon tissue samples. There
are several procedures to identify the main structures in these
images and many are based on a reliable cell nuclei detection

method. There are several image processing algorithms for this
purpose [10–13], but some factors could increase the challenge.
The size of the images can easily reach 100 MB; therefore, the
image processing speed plays an important factor.

In this paper, after the presentation of the technical background
(related work, evaluation method, etc.), we propose a new cell
nuclei segmentation algorithm implemented in a heterogeneous
environment. This method uses all the available GPUs of the
system for the most computationally intensive tasks (data-parallel
cell nuclei segmentation), and all the available CPU cores for the
less computationally intensive additional tasks (splitting and
merging images, and controlling the GPUs).

2. Evaluation of cell nuclei detection methods

2.1. Accuracy of nuclei segmentation algorithms

For comparison, we have to evaluate the accuracy of the
different algorithms. We have 39 colon tissue sample images
manually annotated by qualified pathologists (we will refer to
these as the Gold Standard slides), therefore we can compare the
outputs of the algorithms to these results. There are several
available evaluation methods for this purpose, but most of them
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are not suitable for this task, therefore we designed a new
methodology. We have to know the exact position and shape of
cell nuclei for further diagnosis purposes, therefore the basic
object-level comparison methods are not applicable (for example,
just compare the number of cell nuclei, etc.); we need a pixel-level
comparison method. The widely used confusion matrix gives very
clear and easily understandable results, based on the below
equation:

Accuracy¼ TPþTN
TPþTNþFPþFN

ð1Þ

where

� TP: Number of true-positive pixels (the pixel is correctly
classified as part of a nucleus in both the reference result set
and in the test result set).

� TN: Number of true-negative pixels (the pixel is correctly
classified as not part of a cell nucleus).

� FP: Number of false-positive pixels (in the test result, the pixel
is classified as part of a nucleus, but in the reference result it
is not).

� FN: Number of false-negative pixels (the pixel is incorrectly
classified as not part of a cell nucleus).

However, this pixel-level evaluation itself will not give us perfect
results, because during the segmentation our task is not only to
determine whether a pixel belongs to a nucleus or not, we have to
identify the closed nuclei objects themselves. For example, in the
case of false-negative hits, the pixel-level evaluation cannot
indicate how many nuclei the algorithm misses (for diagnostic
purposes, it really matters whether we miss only one big nucleus,
or a lot of small nuclei). Another problem can be when there are
several small nuclei in the reference slide, but the algorithm
identifies them as one large nucleus. In this case, the pixel-level
comparison indicates relatively small errors; however, this can be
very important information for detecting malicious cells.

Our specialized measurement number is not based only on the
pixel-by-pixel comparison; instead it starts by matching the cell
nuclei together in the reference and the test results. One cell
nucleus from the reference result set can only have one matching
cell nucleus in the test result set and vice versa. After matching the
cell nuclei, we can compare the paired elements using the
confusion matrix. There are some other improvements: for exam-
ple, we use some weighting in the case of false-positive and false-
negative pixels based on the distance from the nearest valid pixel,
which is important for the appropriate results near the borders of
the nuclei.

The implementation of this evaluation method raises several
problems. The pairing of the test-reference nuclei is a very resource-
consuming step (in the case of several overlapping nuclei, the
number of valid pairings can be billions); therefore we use a
backtracking-based method to find the optimal result [14]. In this
paper, we will use this evaluation method for every task where we
need to check the accuracy of the nuclei detection algorithm
(evaluation of algorithms, testing, parameter optimizing, etc.).

2.2. Comparison of nuclei detection methods

The main purpose of these algorithms is the same: we have to
select the pixels of the sample, which could belong to any nucleus. The
first thought would be to use the colours of the pixels for this
separation, but in practice, this causes many difficulties. In the case
of a specific image, we can achieve good results because we can easily
teach the program whether a given colour represents a nucleus pixel
or not. However, our experiences show that the colours of the images
pre-processed by different labs are significantly different. This problem

can be solved with some profile files (one profile for each lab), since
we can transform all images into a standardized colour space.
However, in practice, it turned out that there are significant differences
between results from the same laboratories as well. Even if the same
tools and materials are used, a different amount of stain and proces-
sing time can cause different colours (in some cases, the nuclei are
very strong dark areas, but in the case of some other images, these are
significantly less contrasting).

There are various automatic threshold based techniques to
solve this problem. Several papers deal with segmentations using
the K-means procedure [15], which produces very quickly and
with impressive results. The main limitation of this method is the
insufficient accuracy [16]. Further options are the texture based
methods [17] and colour clustering [18]. It is easy to achieve the
quick results initially with moderate accuracy, but further devel-
opment is generally impossible. Nevertheless, it is worth consider-
ing these techniques as they are quite flexible in regard to various
staining conditions. Therefore, these procedures can be used for
fast pre-processing.

Region growing is a more sophisticated technique [19]. This is
because we can exactly define and fine-tune the iteration steps by
choosing an arbitrary fitness function and stopping condition. Both
of these may consider the colour of the pixels, the environmental
conditions, the size of the increased region, their position, etc.
Another important advantage of the region growing approach is
that it provides information not only about the individual pixels
(whether a given pixel belongs to a cell nucleus or not), but it gives
detailed information about the whole cell nuclei objects (the result
of the region growing is a list of cell nuclei). This information is
essential by itself for the diagnosis (number of nuclei, density of
nuclei, etc.), and it is useful for the further segmentation of the
image (glands, surface epithelium, etc.).

However, region growing has some disadvantages as well. First,
the biggest problem is that this method is rather slow. The process
is slow to the extent that practical use seems almost impossible,
because the segmentation of large images (8192� 8192 pixels size
or even greater) containing a moderate number of nuclei may
require up to one hour to complete. However, because the process
offers good accuracy, it is definitely worth dealing with this
drawback, though, we have tried to speed up the process as much
as possible (without loss of accuracy). For the implementation, we
use the graphics hardware, because it is used in similar projects
with good results [20,21].

3. Cell detection with data parallel region growing

3.1. Parallel region growing

The implemented region growing algorithm iterates the follow-
ing three steps until one of the stopping conditions is met. Due to
space limitations, this paper contains only a brief description of
parallel region growing. Detailed introductions can be found in [22].

1. It checks the four possible directions in which the contour can
be expanded. In case of the first iteration, this means the four
neighbours of the starting point (seed point), in the latter
iterations the pixels around the lastly accepted contour point
(see below). We can check all directions at the same time;
therefore, four threads examine the different neighbours,
whether they are suitable for further expansion or not.

2. In the next step, all contour points are evaluated to decide the
direction in which the region should be expanded. The algorithm
evaluates a fitness function for every point. Unfortunately, some
parameters of this fitness function change at the insertion of
every new point (centre of the region, average intensity of the
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