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a b s t r a c t

Diffusion tensor imaging (DTI) is a form of MRI that has been used extensively to map in vivo the white
matter architecture of the human brain. It is also used for mapping subcortical nuclei because of its
general sensitivity to tissue orientation differences and effects of iron accumulation on the diffusion
signal. While DTI provides excellent spatial resolution in individual subjects, a challenge is visualizing
consistent patterns of diffusion orientation across subjects. Here we present a simple method for
averaging direction-encoded color anisotropy maps in standard space, explore this technique for
visualizing the substantia nigra (SN) in relation to other midbrain structures, and show with signal-
to-noise analysis that averaging improves the direction-encoded color signature. SN is distinguished on
averaged maps from neighboring structures, including red nucleus (RN) and cerebral crus, and is
proximal to SN location from existing brain atlases and volume of interest (VOI) delineation on
individual scans using two blinded raters.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Diffusion tensor imaging (DTI) is a form of magnetic resonance
imaging (MRI) that is sensitive to the diffusion of water molecules
[1]. Since brain tissue is coherently organized and therefore
presents barriers to random diffusion, DTI has proven extremely
helpful for systematically mapping in vivo the white matter
architecture of the human brain [2,3]. DTI has also been used for
mapping the location and subdivisions of subcortical nuclei, most
notably the thalamus [4], which contains extensive connectivity
with the cortical mantle. Other smaller nuclei, such as the
subthalamic nucleus (STN) and substantia nigra (SN), can be
visualized albeit with varying degrees of difficulty on individual

subject DTI datasets [5,6], but are nonetheless critical to locate.
This is especially true for targeted electrical stimulation that can
alleviate some symptoms of devastating neurological disorders
like Parkinson’s disease [7,8]. Yet, deep brain stimulation implants
are complicated by failure rates during the targeting of small
subcortical structures [9,10]. Averaging of multiple direction-
encoded color maps (DECM) is one simple method for potentially
improving signal-to-noise and visualization of these structures
within individual subjects for targeted surgical procedures.

Another challenge is visualizing consistent patterns of the
orientation of the diffusion signal across groups of subjects. While
the most widely referenced DTI brain atlases present color-coded
diffusion orientation maps constructed from individual subject
data [11], emerging techniques seek to combine data from multi-
ple subjects in standard space to map consistent patterns of
diffusion orientation [12]. These types of DTI population studies
are important for building confidence about the average location
and variability of brain structures that are difficult to localize. They
are also important for tracking changes over time, as degeneration
occurs slowly during aging and the accumulation of iron can affect
the MRI signal [13–15].

The SN, a nucleus containing dopaminergic projection neurons,
is vulnerable to degeneration even before the initial symptoms of
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Parkinson’s disease manifest [16]. The SN is difficult to resolve on a
conventional T1-weighted MRI. However, several specialized MRI
sequences and analysis techniques have been used to improve the
ability to resolve the SN, including proton density-weighted MRI
with short inversion-time recovery images [17], neuromelanin-
sensitive MRI [18], quantitative T2 mapping [19], segmented
inversion recovery ratio imaging [20–22], a combination of T2n

and diffusion-weighted imaging [23,24], connectivity-based par-
cellation using probabilistic diffusion tractography [25], and multi-
spectral MRI sequences [26].

Several of these specialized techniques have been deployed
with the goal of distinguishing the pars compacta (SNc) from the
pars reticulata (SNr) subdivisions of the SN. However, these studies
[17,25] have provided ambiguous results regarding decreases in
the volume of the SNc, the subdivision containing excitatory
dopaminergic projections to the dorsal striatum, in Parkinson’s
patients. While it has been demonstrated that the SN can be
resolved on individual subject DTI DECM [6,11], questions remain
about the consistency with which the SN can be identified from
these color maps across subjects. Additional questions remain
about the location of SN on these color maps with respect to
stereotactic coordinates of the SN referenced from available brain
atlases.

To address these questions, we developed a simple method for
averaging direction-encoded anisotropy-modulated color maps in
standard space. Then we explored the improvement that signal
averaging affords for localizing the SN in relation to other
structures of the human midbrain. We chose the SN because its
small size presents a continual challenge for localization, its
critical landmark status for deep brain stimulation, and its impor-
tance as a candidate biomarker of early degeneration in patients at
risk of developing Parkinson’s disease [27]. Our primary objective
is to demonstrate, using a large sample of healthy controls, the
utility of a simple and fast directional anisotropy averaging
approach for visualizing the SN in relation to nearby structures,
including the red nucleus (RN) and cerebral peduncle. Using two
blinded raters, we then explore the location of the SN on average
DECM with respect to the delineation of this structure on indivi-
dual subject DTI datasets, and in relation to reported SN coordi-
nates from the most frequently cited brain atlases.

2. Methods

2.1. Image acquisition

A diffusion-weighted imaging sequence was obtained from 58
normal control subjects (mean age 34.1, 28 females, 5 left handed)
using a 3 T Philips MRI scanner (32 diffusion directions; repetition
[TR]/echo time [TE] 8500/67 ms; flip angle¼90 degrees; 128�128
matrix, FOV¼224 mm; 2 mm thick axial slices; b-value¼800
s/mm2). A high-resolution 3D T1-weighted magnetization-prepared
rapid acquisition turbo field echo sequence (TR/TE¼8.4/3.9 ms;
flip angle¼8 degrees; matrix size¼256�256; field of view¼
240 mm; 1.0 mm thick sagittal slices) was acquired in each subject,
as well as a T2-weighted turbo-spin echo 3D volume acquisition
(TR/TE¼2500/367 ms; echo-train length¼120; pixel bandwidth¼
380; flip angle¼90 degrees; matrix size¼256�256; field of
view¼240 mm; 1.0 mm thick sagittal slices) in a subset of 16
subjects.

2.2. Image processing

Analysis was performed in Analysis of Functional Neuroimages
(AFNI) [28]. For each subject, the T1-weighted MRI volume was
stripped of scalp and skull. To correct for subject motion over time,

individual diffusion-weighted volumes were then aligned to
the skull-stripped T1 volume in native space. Separately, the
T2-weighted volume was aligned to the T1 volume.

At each voxel of the 32 aligned native-space diffusion volumes,
a diffusion tensor was estimated by a linear least squares fitting
method to obtain the three shape (eigenvalues) and three orienta-
tion parameters (eigenvectors) of the diffusion ellipsoid:
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Using the eigenvalues, the extent of anisotropy, ranging from
0 to 1, was expressed at each voxel by computing fractional
anisotropy (FA):
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With the trace:

λ̂¼ ðλ1þλ2þλ3Þ=3 ð1:3Þ
With respect to the orientation parameters, we discard v2 and

v3 and use v1 at each voxel, which is the orientation of the major
eigenvector and represents local tissue orientation as defined by
the principal diffusion direction. The major eigenvector v1 is a unit
vector consisting of x, y, and z components (v1¼[x,y,z] where
x1þy1þz1¼1). The x, y, and z components are mapped to a
combination of red, green, and blue (RGB) colors representing
left–right, anterior–posterior, and superior–inferior principal dif-
fusion directions. For example, when v1 is [1,0,0] the RGB channels
receive [255,0,0] representing a primarily left–right diffusion
orientation, and when v1 is [1/√2, 1/√2, 0] the RGB channel is
[181,181,0] which maps to the color yellow.

In native space, the computed 24-bit v1 orientation vector map
was then split into three separate 8-bit volume maps, v1x, v1y, v1z,
which are the three color channels making up a combination RGB
at each voxel.

Separately, the native space skull-stripped T1 MRI volume was
spatially normalized to the Montreal Neurological Institute (MNI)
Colin N27 average brain, and a 12-parameter affine transformation
matrix was saved. The T2 volumes were also spatially normalized
using the same transform.

Then, each separate 8-bit component color channel map, v1x,
v1y, v1z, was spatially transformed to MNI space by applying the
transform derived by affine normalization of the skull-stripped T1
to MNI space. The three spatially normalized color channel maps
were concatenated to form a new 24-bit RGB major eigenvector
map, v1norm¼[v1xnormþv1ynormþv1znorm], and multiplied by FA to
produce an intensity modulated DECM in MNI space. Finally, the
DECM in MNI space were averaged across subjects and used to
construct a single average color map. Averages of the T1 and T2
volumes were also created for comparison.

To explore how efficiently the SN could be localized using
DECM information from single-subject DTI data, two raters
blinded to each other’s measurements and to the final average
DECM outlined the SN bilaterally as a volume of interest (VOI)
mask in a subset of 11 subjects. Their native space VOI masks were
then spatially summed, and each pixel value was expressed as a
percentage of agreement from 0 to 100. A value of 100 means that
both raters agreed, in all subjects, that a given pixel belonged to
the SN.

To provide statistical quantification of the improvement in
discerning the SN as increasing numbers of DECM are averaged,
a signal-to-noise analysis was performed. Within the combined
827 pixel left and right SN volume of interest mask (Fig. 3), a
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