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A B S T R A C T

In standard geographically weighted regression (GWR), the spatially-varying relationships between the depen-
dent and each independent variable are explored under a constant and fixed scale, but for many processes their
variation intensity may differ with respect to location and direction. To address this short-coming, a GWR model
with parameter-specific distance metrics (PSDM GWR) can be used, which by default, also specifies parameter
specific bandwidths. In doing so, PSDM GWR provides a scale-dependent extension of GWR. Commonly how-
ever, an ideal distance metric for a given independent variable parameter is not immediately obvious. Thus, in
this article, PSDM GWR is investigated with respect to distance metric choice. Here, it is demonstrated that the
optimum (distance metric specific) bandwidth corresponding to a given independent variable remains essen-
tially constant, independent of the choices made for the other independent variables. This result allows for a
considerable saving in computational overheads, permitting a much simpler searching procedure for multiple
bandwidth optimization. Results are first demonstrated empirically, and then a simulation experiment is con-
ducted to objectively verify the same findings. Computational savings are vital to the uptake of PSDM GWR,
where ultimately, it should be considered the default choice in any GWR-based study of spatially-varying re-
lationships, as standard GWR, mixed (or semi-parametric) GWR, flexible bandwidth (or multi-scale) GWR and
the global regression are specific cases thereof.

1. Introduction

As indicated by Goodchild (2004), spatial heterogeneity in geo-
graphic variables or relationships, as a corollary of uncontrolled var-
iation, requires a spatially-bounded analysis, “move the study area, and
the results will change”. In this context, numerous localized methods
have been proposed that produce spatially-varying outputs instead of a
‘one-size-fits-all’ output from a global, often non-spatial, method
(Fotheringham & Brunsdon, 1999). Early spatially-localized techniques
include the expansion method (Casetti, 1972), kriging with local var-
iograms (Haas, 1990, 1996), a local multilevel model (Jones, 1991),
local indicators of spatial association (Anselin, 1995; Getis & Ord,
1992), a spatially-adaptive filtering model (Gorr & Olligschlaeger,
1994), geographically weighted (GW) regression (GWR) (Brunsdon,
Fotheringham, & Charlton, 1996; McMillen, 1996), GW summary

statistics (Brunsdon, Fotheringham, & Charlton, 2002), GW principal
components analysis (Fotheringham, Brunsdon, & Charlton, 2002;
Harris, Brunsdon, & Charlton, 2011) and Bayesian space-varying coef-
ficient (SVC) models (Assunção, 2003; Gelfand, Kim, Sirmans, &
Banerjee, 2003). More recent techniques include GW discriminant
analysis (Brunsdon, Fotheringham, & Charlton, 2007), SVC eigenvector
spatial filtering (Griffith, 2008; Murakami, Yoshida, Seya, Griffith, &
Yamagata, 2017) and GW quantile regression (Chen, Deng, Yang, &
Matthews, 2012). Many of the GW-based models have been integrated
into the GWmodel R package (Gollini, Lu, Charlton, Brunsdon, &
Harris, 2015; Lu, Harris, Charlton, & Brunsdon, 2014).

The focus of this study lies with GWR, which is an increasingly
popular technique for modeling heterogeneous processes across many
research domains (Fotheringham, Crespo, & Yao, 2015). It allows for
the investigation of spatially-varying relationships via the fitting of
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individual localized linear regressions at focal locations. Here a ‘bump
of influence’ allows nearer observations to have a greater influence in
the local regression fit than observations further away (Fotheringham
et al., 2002). This is achieved by weighting observations via a kernel
weighting scheme, where the kernel can be any distance-decay func-
tion, which is non-increasing, real, and bounded from 0 to 1 (Cho,
Lambert, & Chen, 2010). Crucial to GWR is the choice of distance
metric and the size of the bandwidth. The latter describes the rate of
distance decay for the data weightings: a large bandwidth tends to
smooth out variation in the local regression parameter estimates (larger
bias), while a small bandwidth tends to sharpen them (larger variance).

For distance metrics in GWR, Lu, Charlton, Brunsdon, and Harris
(2016), Lu, Charlton, and Fotheringham (2011), Lu, Charlton, Harris,
and Fotheringham (2014), Lu, Harris, et al. (2014) proposed the use of
non-Euclidean distance (non-ED) metrics, and found model fit to be
significantly improved to that found with the Euclidean distance (ED);
and intriguingly, Huang, Wu, and Barry (2010) and Fotheringham et al.
(2015) in space-time extensions of GWR, defined the temporal metric
using distances rather than time. For bandwidths, a fixed distance or a
fixed number of nearest neighbors (adaptive) is specified
(Fotheringham et al., 2002; Wheeler & Páez, 2010). An optimum
bandwidth is then determined by minimizing a model fit statistic
(Loader, 1999), such as a leave-one-out cross-validation (CV) score
(Brunsdon et al., 1996; Cleveland, 1979) or the Akaike Information
Criterion (AIC) (Akaike, 1973; Fotheringham et al., 2002). Farber and
Páez (2007) proposed two modified CV approaches to relieve excessive
influence of the CV score on any single (anomalous) focal point. Cho
et al. (2010) optimized the bandwidth via minimizing a spatial error
Lagrange Multiplier, and so reduce error autocorrelation in the re-
sultant GWR model.

However, all such GWR calibrations naively assume a uniform scale
or magnitude of the non-stationarities for all dependent-independent
relationships. It is more likely that the variation intensity of these re-
lationships is different. That is, relationships are not only non-sta-
tionary, but operate at different spatial scales. In this respect, Brunsdon,
Fotheringham, and Charlton (1999) introduced mixed GWR that treats
some data relationships as global (or fixed), and the rest as local (but
each at the same spatial scale). Yang (2014) extended this notion via
flexible bandwidth GWR (FBGWR), also known as multi-scale GWR
(Fotheringham, Yang, & Kang, 2017), where each dependent-in-
dependent relationship operates at its own (and commonly different)
spatial scale, via specifying a different bandwidth for each independent
variable. Lu, Brunsdon, Charlton, and Harris (2017); Lu, Harris,
Charlton, and Brunsdon (2015) combined FBGWR with the use of dif-
ferent distance metrics for each relationship, to form the parameter-
specific distance metric model (PSDM GWR) of this study.

Unfortunately, a suitable distance metric for a given independent
variable is rarely known with clarity, and how to specify a variety of
metrics within the same model is difficult, especially when the number
of independent variables is large. Distance metrics can vary greatly due
to the diversity of the sample data and the complexity of the under-
lying geography. If metrics are known, they are not always correctly
calculated. Although Lu et al. (2017, 2015) introduced PSDM GWR, its
computational burden clearly required attention, and as such, only a
rather limited form of PSDM GWR was demonstrated. This study now
revisits the PSDM GWR model where the selection procedure (search
strategy) for the parameter-specific distance metrics is revised and
improved. By default, FBGWR is also revisited (where it only specifies
ED metrics) and its fitting procedure is similarly improved.

This article is organized as follows. Firstly, we describe PSDM GWR
and present a brute-force search strategy. Secondly, we empirically
assess all possible distance metric combinations for a PSDM GWRmodel
with ED and travel time (TT) as candidate metrics, and in doing so, we
propose a revised search strategy that reduces computational over-
heads. We also experiment with the Minkowski approach for the same
purpose. Thirdly, we objectively endorse the empirical findings via a

simulation experiment. Finally, we summarize the study results and the
advances therein.

2. Methodology

2.1. GWR

A standard GWR model can expressed as:
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where yi and xik(k=1,⋯,m)are the observations of the dependent
variable and the independent variables, respectively at location i,
βik(k=0,1,⋯,m) is the set of regression parameters estimated at lo-
cation i; and εi is the random error term. It is calibrated by a weighted
least squares approach at each regression point, of which the matrix
expression is:
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where X is the matrix of the independent variables with m+1 columns
and a column of 1s for the intercept (if there is one); y is the vector for
the dependent variable; Wi is a diagonal matrix denoting the geo-
graphical weightings for each observation data (sub-)set at regression
location i, and can be found via a kernel function that generates dis-
tance-decay values ranging from 0 to 1. Kernels are commonly specified
as Gaussian, exponential, box-car, bi-square and tri-cube (Gollini et al.,
2015).

2.2. GWR with parameter-specific distance metrics

In standard GWR, the weighting matrix is calculated with a ED
metric together with a unique bandwidth. This assumes that ‘as the
crow-flies’ distances are appropriate throughout, and that any depen-
dent/independent variable relationship varies at the same spatial scale.
However, the spatially-varying scale or intensity of the different de-
pendent/independent variable relationships may differ, and as such,
each should have their own distinct weighting scheme within the same
model (Lu et al., 2015; Yang, Fotheringham, & Harris, 2011). Such si-
tuations are catered for with PSDM GWR, which is implemented via an
adjusted back-fitting algorithm as used in mixed GWR and FBGWR,
which are each a particular case of PSDM GWR. The PSDM GWR model
can be expressed as:
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where DMkand bwk (k=0,1,⋯,m) represent the specific distance me-
tric and bandwidth for each independent variable (and intercept)
parameter estimate, respectively. A full account of PSDM GWR is pro-
vided in Lu et al. (2017).

To choose an optimum bandwidth for each parameter of PSDM
GWR, an optimization can be conducted by minimizing the CV score or
the corrected AIC (AICc) within the back-fitting iterations
(Fotheringham et al., 2017; Lu et al., 2017). Note AICc takes into ac-
count the effective sample size. However as spatial autocorrelation is
likely, the effective sample size is expected to be much smaller than the
nominal sample size. Lu et al. (2017) indicated that the bandwidth for
each parameter of a PSDM GWR model would converge quickly to an
optimum, regardless of whether the optimization procedure is ex-
haustive or not. The same can be found in the presentation of FBGWR
(Fotheringham et al., 2017). Thus, Lu et al. (2017) proposed a threshold
value δ to diagnose bandwidth convergence, i.e. the bandwidth value
for a given parameter will be set as fixed, instead of being exhaustively
searched for, provided the change of the optimized values in the re-
spective iterations is less than δ. This approach provides some com-
putational saving, but the back-fitting procedure itself still presents a

B. Lu et al. Computers, Environment and Urban Systems xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/6921816

Download Persian Version:

https://daneshyari.com/article/6921816

Daneshyari.com

https://daneshyari.com/en/article/6921816
https://daneshyari.com/article/6921816
https://daneshyari.com

