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Many spatial analyses involve constructing possibly non-convex polygons, also called “footprints,” that charac-
terize the shape of a set of points in the plane. In caseswhere the point set contains pronounced clusters and out-
liers, footprints consisting of disconnected shapes and excluding outliers are desirable. This paper develops and
tests a new algorithm for generating such possibly disconnected shapes from clustered points with outliers. The
algorithm is called χ-outline, and is based on an extension of the established χ-shape algorithm. The χ-outline
algorithm is simple, flexible, and as efficient as the most widely used alternatives, O(n logn) time complexity.
Compared with other footprint algorithms, the χ-outline algorithm requires fewer parameters than two-step
clustering-footprint generation and is not limited to simple connected polygons, a limitation of χ-shapes. Fur-
ther, experimental comparison with leading alternatives demonstrates that χ-outlines match or exceed the ac-
curacy of α-shapes or two-step clustering-footprint generation, and is more robust to some forms of non-
uniform point densities. The effectiveness of the algorithm is demonstrated through the case study of recovering
the complex and disconnected boundary of a wildfire from crowdsourced wildfire reports.
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1. Introduction

Many real-life applications require the construction of polygonal re-
gions that characterize the distribution of a set of points in the plane
P⊂ℝ2 (e.g., Downs and Horner (2009)). Such regions are called “foot-
prints” of P. A typical structure used to generate a footprint is the convex
hull. The convex hull of P is the smallest convex polygon that contains all
points in P (De Berg, Van Kreveld, Overmars, & Schwarzkopf, 2000).
However, in cases where the distribution of points is markedly non-
convex, there can be no single “correct” footprint. Rather, the accuracy
of a footprint may depend on the specific application, or on human
cognition and preference. Further, the point distribution may be best
characterized by disconnected polygons, possibly neglecting outliers
(Lee & Estivill-Castro, 2006; Lee, Qu, & Lee, 2012). Fig. 1 shows an
example of a point set P that contains pronounced clusters and outliers.
In such a case the convex hull significantly fails to capture the shape of P,
illustrated in Fig. 1(a).

Today, several algorithms exist to construct “accurate” footprints for
suchnon-convex and clustered point distributions. Because there can be
no unique non-convex polygon, such algorithms require at least one
adjustable parameter to obtain desirable footprints. This paper develops
and tests a new algorithm for generating possibly disconnected poly-
gons that characterize the shapes of such non-convex and clustered

point distributions. The algorithm, called χ-outline is an adaptation of
the established χ-shape algorithm (Duckham, Kulik, Worboys, &
Galton, 2008) to handle disconnected shapes and outliers using only a
single parameter. Fig. 1(b) illustrates a typical output of the algorithm.

Following a review of the background literature in Sections 2 and 3
describes the χ-outline algorithm itself in detail. Section 4 then evalu-
ates the performance of the algorithm against the two leading alterna-
tives: α-shapes, and a two-step clustering-footprint generation based
on DBSCAN and χ-shapes. The evaluation shows that in most cases
the accuracy of χ-outlines equals or outperforms these alternatives, in
particular where individual clusters tend to differ in point densities.
Section 5 illustrates the application of χ-outlines to a case study of
wildfire perimeter estimation based on crowdsourced fire reports,
where systematic differences in cluster densities are common, due to
variations in population density. Finally, Sections 6 and 7 provide a
discussion of the results and the final conclusions, respectively.

2. Background

This paper focuses on footprint algorithms where the goal is to con-
struct a polygonal region that adequately represents the distribution of
a given set of points, P, that occupies one or more regions in the plane.
We do not here consider the special case where points in P lie only on
curves or the boundary of regions. Numerous algorithms already exist
to generate curves or outlines for this latter case (e.g. Amenta, Choi, &
Kolluri, 2001a, 2001b, Attali, 1997, Traka & Tziritas, 2003).
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2.1. Simple region-based footprints

One characteristic frequently used to distinguish footprint
algorithms is whether or not all the input points in P are required to
lie in the interior of the footprint. For example, covering discs and the
covering discs with tangents methods (Galton & Duckham, 2006) assign
an influence region to each point in P. The footprint is the union of the
influenced regions of all points in P. The shape and size of the influenced
region decide the resulting footprint, but all input points in P will be
contained in the footprint.

The Voronoi diagram (VD) based method of Alani, Jones, & Tudhope
(2001) and the Delaunay triangulation (DT) based method of
Arampatzis et al. (2006) also produce footprints that contain all the
input points. These methods additionally require auxiliary points Pα
which are considered to be outside of the footprint. The principle is to
construct a footprint whose edges separate a point in P from its neigh-
boring points in Pα, so that the footprint contains all points in P and ex-
cludes all points in Pα. The edges of the VD and the DT of P∪Pα are used
to generate the edges of the footprint. In the VD basedmethod, Voronoi
edges that are shared by a Voronoi cell of a point in P and a Voronoi cell
of a point in Pα form the footprint (Alani et al., 2001). In the DT based
method, the edges of the footprint are generated by connecting themid-
points of the triangulation edges that connect a point in P and a point in
Pα (Arampatzis et al., 2006). These twomethods aremost appropriate in
cases where Pα is given, i.e., where the problem involves a set of both
positive (included) and negative (excluded) points. Galton and
Duckham (2006) described an iterative approach to using these two
methods when Pα is not given. An initial Pα is generated randomly
outside the convex hull of P to produce a preliminary footprint. Then a
new Pα is generated outside the preliminary footprint, which produces
a new footprint. The final footprint can be obtained by a pre-defined
number of successive iterations.

In many cases, footprint algorithms generate a single, simple poly-
gon to characterize the shape of P. For example, the k-nearest neighbors
(kNN) basedmethod (Moreira & Santos, 2007) was proposed by gener-
alizing the gift-wrapping convex hull algorithm (Jarvis, 1973). At each
iteration, the kNN-based algorithm finds the next point from the kNN
of current points, instead of processing the entirety of P used in the
gift-wrapping algorithm. Each subsequent point produces the largest
right-hand turn from the current point without resulting in self-
intersection. When no legal subsequent points exist, the algorithm has
to increase k and rerun from the beginning. The algorithmalso increases
k and reruns from the beginning if it generates a footprint that does not
include all points in P. Hence the algorithm has a poor worst-case effi-
ciency. The χ-shape algorithm (introduced in detail in Section 3) pro-
posed by Duckham et al. (2008) is more efficient than the kNN-based
method, but also can only produce a single, simple polygonal footprint.

2.2. Pre-clustering and outliers

To characterize more complicated and clustered point distributions,
such as illustrated in Fig. 1, input points may be pre-processed using a
spatial clustering algorithm (e.g. Miller & Han, 2009, Xu & Wunsch,
2005). In general, clustering may be able to handle a priori unknown
numbers of clusters with arbitrary shapes, as well as outliers. For exam-
ple, one of the most widely used spatial clustering algorithms is the
density-based DBSCAN (Ester, Kriegel, Sander, & Xu, 1996). Clustering
using DBSCAN can partition the point set P into one or more disjoint
clusters Pi and possibly a set of outliers O. After clustering, any of the
footprint algorithms discussed above, including the kNN-based
algorithm or the χ-shape algorithm, can be applied to each cluster
independently.

The approach of pre-clustering process allows independent identifi-
cation of clusters and outliers, providing great flexibility in footprint
generation. But there are two disadvantages. First, any pre-clustering al-
gorithm necessarily requires additional parameterization. Just as for
non-convex footprint generation, there can be no single correct answer
for clustering. Selecting the correct clustering parameter may be
difficult to achieve automatically. The quality of the constructed
footprints is then strongly dependent on the parameterization of the
clustering algorithm. Second, depending on the footprint algorithm pa-
rameterization, the footprints of clusters may intersect with one other.
In this case, the union of the footprints needs to be calculated to obtain
regular polygonal shapes. In addition, the union of the footprints possi-
bly contains holes, which also need to be detected and removed for
regular polygonal shapes. These additional steps may also increase the
complexity and computational overhead of this approach.

2.3. Footprints for clusters and outliers

Some well-known footprint algorithms do enable the construction
directly of disconnected polygonal shapes for points with clustered dis-
tributions. The output footprints of these algorithms may consist of
polygons, lines, and isolated points. The polygonal shapes may not con-
tain all points in P. These algorithms can separate sampling points
(points contained in the polygonal shapes) from outliers (points not
contained in the polygonal shapes) by themselves, without the need
of pre-clustering. The α-shape algorithm (Edelsbrunner, Kirkpatrick, &
Seidel, 1983) is themost famous example, which generalizes the convex
hull with a single parameterα, themultiplicative inverse of the radius of
closed disks. Negative parameters yield the complement of an open disk
of radius –1/α. The α-shape of P is a sub-graph of the DT of P. For large
negative α, the α-shape of P is just P itself. When α = 0, the α-shape is
the convex hull of P.

Fig. 1. (a) Convex hull and (b)χ-outline (χ=0.33) of an example set of two-dimensional points. The points contain pronounced clusters, outliers, and illustrate a non-convex distribution.
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