
An efficient terrain Level of Detail implementation for mobile devices
and performance study

José P. Suárez a, Agustín Trujillo b, José M. Santana b,⇑, Manuel de la Calle c, Diego Gómez-Deck c

a Division of Mathematics, Graphics and Computation (MAGiC), IUMA, Information and Communication Systems, University of Las Palmas de Gran Canaria, Canary Islands, Spain
b Imaging Technology Center (CTIM), University of Las Palmas de Gran Canaria, Canary Islands, Spain
c IGO SOFTWARE, Department of R+D, Cáceres, Spain

a r t i c l e i n f o

Article history:
Received 9 June 2014
Received in revised form 20 February 2015
Accepted 21 February 2015

Keywords:
Virtual globe
Level of Detail
Earth navigation
Mobile devices
Height maps

a b s t r a c t

On the basis of traditional Terrain Quadtree algorithms this paper introduces a new Level Of Detail (LoD)
criteria which allows the visualization of a virtual earth on many kinds of mobile devices with a suitable
accuracy. The earth rendering system is intended to run beneath the threshold that resources of current
devices impose, regarding especially the graphics hardware capabilities and the memory usage. At the
same time, the system deals flawless with typical screen-based user interaction allowing smooth flying
and rapid orientation changes of the camera. The present work analyses the memory and graphics
requirements from a theoretical perspective. Finally, we give a useful performance study that compares
the globe on some mobile and desktop devices, focusing on LoD techniques, visibility test, creation of
texture tiles, uploading tiles to GPU, and rendering.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is a known fact that terrain rendering has been an open prob-
lem for quite a long time now. The enormous amount of data to be
fetched, the broad variety of data sources and types and the com-
plexity of the rendering are only a few parts of this challenge.

At the same time the arise of the handheld computers such as
smartphones and tablets has disrupted the GIS ecosystem offering
new collective data sources (Kalantari, Rajabifard, Olfat, &
Williamson, 2014) and new developing platforms. The difficulties
only grow when dealing with mobile devices which short
computational resources and multitouch interaction are still prob-
lematic. Many systems have been developed with approaches to
the solution, most of them using techniques such as chunked terrain.

1.1. Modern approaches to terrain rendering

The quadtree structure was first proposed by Lindstrom et al.
(1996) as a way to render height maps. Since then, many systems
have adopted this approach to create Virtual Earths and map appli-
cations. Some of them belong to the closed-source category such as
Marble, Apple’s Maps, and Nokia Here. Systems like the popular

Google Earth, based on Keyhole’s EarthViewer (2004), rely on their
own data sources allowing the user only to input data via KML files.
Besides, closed software like this does not allow user-created
plugins.

Modern projects are so diverse that a virtual globe engine should
be as customizable as possible. The open-source community holds
some good examples of this, with projects as World Wind (Bell
et al., 2007), CesiumJS,1 OpenWebGlobe2 or WebGLEarth.3

Nasa’s World Wind is based on Java so it can be used as a desk-
top application or embedded in a web environment. In addition,
latest versions allow it to be run on Android. This project is driven
now by the community and is completely customizable offering
the chance of using imagery and elevation provided by the user.

Another good example of an open virtual globe engine would be
CesiumJS which implements the latest techniques on the field
aimed at a WebGL environment. Other projects as WebGLEarth
use under the hood CesiumJS as a rendering engine. However,
map viewers on web taking advantage of graphical hardware is a
major trend, specially for 2D map projects, such as the work of
Jenny, Šavrič, and Liem (2014).

However, at the time this paper has been written, it is hard to
find an open solution that allows the creation of virtual globes in
mobile devices and WebGL. The space becomes narrower when it

http://dx.doi.org/10.1016/j.compenvurbsys.2015.02.004
0198-9715/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: josepablo.suarez@ulpgc.es (J.P. Suárez), atrujillo@dis.ulpgc.es

(A. Trujillo), josemiguel.santana@ulpgc.es (J.M. Santana), mdelacalle@igosoftware.
es (M. de la Calle), diego@consultar.com (D. Gómez-Deck).

1 Cesium, http://cesiumjs.org/.
2 OpenWebGlobe, http://www.openwebglobe.org/.
3 WebGLEarth, http://www.webglearth.org/.

Computers, Environment and Urban Systems 52 (2015) 21–33

Contents lists available at ScienceDirect

Computers, Environment and Urban Systems

journal homepage: www.elsevier .com/locate /compenvurbsys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2015.02.004&domain=pdf
http://dx.doi.org/10.1016/j.compenvurbsys.2015.02.004
mailto:josepablo.suarez@ulpgc.es
mailto:atrujillo@dis.ulpgc.es
mailto:josemiguel.santana@ulpgc.es
mailto:mdelacalle@igosoftware.es
mailto:mdelacalle@igosoftware.es
mailto:diego@consultar.com
http://cesiumjs.org/
http://www.openwebglobe.org/
http://www.webglearth.org/
http://dx.doi.org/10.1016/j.compenvurbsys.2015.02.004
http://www.sciencedirect.com/science/journal/01989715
http://www.elsevier.com/locate/compenvurbsys


comes to dealing with several kinds of terrain imagery and models
of terrain. A good taxonomy of all kinds of GIS software is offered in
the work of Steiniger and Hunter (2013) where it is noticeable the
scarcity of mobile solutions. Glob3 Mobile4 is offered as a solid
solution, dealing with most of the use cases and providing a single
software project for three platforms.

The problems encountered rendering terrain on handheld
devices are discussed in detail in previous works (Siti Aida Mohd
Isa, Mohd Shafry Mohd Rahim, & Kasmuni, 2010). Regarding this
topic, it is noteworthy our previous work in the field, in which
Glob3 Mobile was introduced.

1.2. The Glob3 Mobile project

Glob3 Mobile is a platform independent engine aimed at the
creation of visual representations of geospatial data in the most
general way possible. It is meant to be run on iOS, Android and
WebGL platforms which means that it has to provide a smooth ren-
dering in a broad variety of devices. The nature of the deployment
process has been matter of previous publications (Trujillo et al.,
2013) but, for the sake of this paper, it is noteworthy that it is used
a native implementation for each platform, which means C++ code
for iOS, Java for Android and Javascript for the Web as seen in Fig. 1.

This same-core development philosophy has been recognized
by the Eclipse Foundation that included the Glob3 Mobile Project
in its LocationTech5 working group.

It is also important to realize that working on many platforms
involves a different management of the memory resources in each
one of them. For the Objective-C/C++ version the memory has to be
allocated and deallocated by the programmer explicitly. This allows
us to control when and how the heap memory is going to be deallo-
cated. On the other hand, virtual machines such as Java (for Android)
or the Javascript environment (for the Web version) delegate that
task to a garbage collector system that is very pleasant to use but
ends up in a quite uncontrollable memory management. In addition,
such virtual machines add a memory overhead to each allocated
instance, so the memory resources are consumed even faster.

Another key aspect is the graphics capabilities of the platforms.
They vary largely in the number of GPU cores and memory
architecture. For instance, iOS devices have a Unified Memory
Architecture (same memory is used for graphics and general
computation), which impacts on the amount of available memory
and transfer latency. It is also important to know that, due to the
mobile focus of the engine, it should rely on the Embedded
Systems version of OpenGL (OpenGL ES) or WebGL on the web.
The current versions of these APIs have many restrictions
compared to their desktop counterpart, and they do not support
hardware accelerated tessellation process. Therefore, our
rendering techniques should rely on meshes computed on CPU to
represent the terrain.

Each one of the devices we work with has its own restrictions in
terms of the access and storage of data, the amount of available
RAM, the number of triangles that can be rendered per frame
and, of course, the user interaction. The core of the system is
the terrain renderer, which is based on a quadtree of tiles with a
splitting mechanism.

1.3. The Level Of Detail test importance

The tile splitting test impacts extremely on the needed
resources and the general performance of the whole engine.
Therefore it has been a key step in the development of Glob3

Mobile to achieve a mechanism that allows to show the required
terrain detail satisfying the hardware constraints.

Our approach to the problem has consisted in the development
of an algorithm that permits to maintain the number of vertices
representing the terrain below a given threshold. This splitting
algorithm will be explained in detail in Section 2 and the theoreti-
cal hardware requirements will be calculated in Section 3.

The transitions between levels of detail should be as unnotice-
able as possible to the user. This becomes tricky when we are talk-
ing about applications that perform flights along large distances.
Moreover, according to our experience, multitouch users tend to
perform more random paths through the scene than mouse-key-
board users. Specially they tend to perform rapid camera turns that
imply that the scene out of the camera frustum must be prepared
for a quick rendering. Our LoD algorithm is independent of the user
orientation to achieve a smooth user experience.

All this efficiency concerns will be taken into consideration in a
performance study at the end of this document. At Section 4 the
rendering process will be decomposed to show the steps needed
to generate the final image. Each one of these stages will be ana-
lyzed regarding its impact on the global performance, and it will
be possible to identify bottlenecks for each platform.

The actual algorithm performance is going to be extracted from
experimentation in Section 5, ensuring that any possible camera
position ends up in a feasible terrain representation. This guaran-
tees that, given a certain hardware configuration, memory usage
will be affordable. At the same time, proper splitting of the ren-
dered terrain and some frustum culling techniques will be neces-
sary to ensure that the graphics hardware can deal with the
number of triangles to be displayed.

Finally, the document points out which are the overall perfor-
mance of the engine in each family of devices. With that in mind,
an experiment has been conducted performing representative
flights in different devices, which results are shown in Section 6.
These results will show the efficiency achieved by our engine for
every platform rendering terrain on real-time.

2. A perspective-based Terrain LoD test

One of the main issues when rendering large portions of the
earth is how to deal with the extremely big amount of data that
forms the terrain model. Many approaches have been developed
to solve this problem (Goosen, 2013) but most of them rely on
showing different representations of the terrain depending on
the camera point of view.

Objective-C
Specific Classes

C++ Glob3 
Engine

+

Java
Specific Classes

Java Glob3
Engine

+

+

Tangible
software

Google
 GWT

iOS Apple App

Android App

JavaScript
Engine

WebGL compliant
 browser

JavaScript
Specific Classes

Fig. 1. Glob3 Mobile life cycle. Development process.

4 Glob3, an open source 3D GIS multiplatform framework: http://glob3.source-
forge.net.

5 LocationTech by Eclipse: https://www.locationtech.org/.

22 J.P. Suárez et al. / Computers, Environment and Urban Systems 52 (2015) 21–33

http://glob3.sourceforge.net
http://glob3.sourceforge.net
http://https://www.locationtech.org/


Download English Version:

https://daneshyari.com/en/article/6921967

Download Persian Version:

https://daneshyari.com/article/6921967

Daneshyari.com

https://daneshyari.com/en/article/6921967
https://daneshyari.com/article/6921967
https://daneshyari.com

