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a b s t r a c t

At present, many approaches and models have been developed to perform spatially explicit simulations
that mimic observed land use and land cover changes (LULC) for a given area. Calibration of such models
is often performed using comparatively standard ‘off-the-shelf’ machine-learning algorithms that are not
necessarily suited to perform effectively within the model’s implementation. This method becomes prob-
lematic when the computational costs of applying an evaluation function to determine the goodness-of-
fit are high; calibration using ‘standard’ algorithms often requires many iterations to achieve satisfactory
outcomes. Furthermore, in some cases, future LULC projections manifest significant changes in trends,
particularly when increasing the number of LULC classes in the simulation and the number of associated
transition rules. This study presents an adapted machine-learning algorithm to optimize a parameter set
applied in a Dinamica-EGO-based LULC change model. A sequentially applied memetic algorithm is
applied to optimize a vast parameter set by extending a genetic algorithm with a local search function.
To achieve consistent long-term projections, a 2-stage approach is applied in which the expansion of the
urban extent and diversification of urban LULC classes are calculated sequentially. The outcomes repeat-
edly show a much faster convergence toward a high goodness-of-fit; significantly fewer iterations and a
smaller population size can be used to attain a similar performance level than when using a standard GA-
enhanced calibration. Furthermore, the observed spatial trends are maintained for long-term projections
using 5-year intervals. In the current application, the model is applied to the rapidly growing metropol-
itan area of Beijing, China.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Originally used in regional economics (e.g., Allen, 1954; Alonso,
1964; Forrester, 1969), land use change models, particularly urban
growth models, attempt to mimic historical and future LULC tran-
sitions in a spatially explicit manner. Depending on the selected
representation of the spatial components, cells or patches repre-
sent discrete LULC classes (i.e., states) that can change over time.
These changes are affected by a set of drivers that are conceptual-
ized as transition rules. Contemporary urban growth models are
often based on cellular automata (CA) models (e.g., Batty & Xie,
1994; Clarke, Hoppen, & Gayos, 1997; Li & Yeh, 2000; White &
Engelen, 1993) that describe cell-based LULC transitions as a func-
tion of local interactions, which represent neighboring conditions

that drive the formation of spatial urban patterns. Often, these
models are combined with ‘top-down’-driven transition rules that
incorporate fixed physical properties (e.g., slope or elevation) and/
or statistically determined growth drivers (e.g., population growth
or economic development). Although most models were essen-
tially developed as generic models capable of representing the
growth dynamics of any metropolitan area, they can be adjusted
to mimic LULC transformations in specific cities or regions. The
model calibration and validation stages can be performed manu-
ally, but they are frequently automated using historical LULC data
as a training set (e.g., Li & Yeh, 2002). During calibration, the rela-
tion between the predicted and observed LULC, by using a set of
metrics determining the goodness-of-fit (e.g., Næsset, 1995), are
combined with an update function that changes the transition
rules. When an optimal correlation is found (i.e., no significant
improvement in the goodness-of-fit can be obtained), the growth
transition rules are applied to prospective years to obtain the
projections. This process is depicted in Fig. 1.
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Machine-learning algorithms or other regression methods are
frequently used to calibrate LULC change models. Long, Mao, and
Dang (2009), as well as many other authors (e.g., Hu & Lo, 2007;
Liu & Phinn, 2003), used logistic regression to optimize transition
rules. Li and Yeh (2004) applied an artificial neural network to opti-
mize parameters, while Yang, Li, and Shi (2008) used a support
vector machine. Recent applications include particle swarm opti-
mization methods (Feng, Liu, Tong, Liu, & Deng, 2011; Rabbani,
Aghababaee, & Rajabi, 2012) or ensemble learning strategies in
which several machine learning algorithms are executed in parallel
(Gong, Tang, & Thill, 2012). All of these stochastic methods are
commonly setup as iterative processes that require multiple model
runs to obtain convergence to satisfactory solutions. Such
approaches work reasonably well when the computational costs
of running a calibration and validation sequence are relatively
low. For example, when a LULC transition for single cells is calcu-
lated, the result is evaluated and an adjustment is made to one
of the controlling parameters; thus, the computational require-
ments are minimal. Yet, some models rely on both local and global
comparisons of the LULC change maps for evaluations. Particularly
large areas composed of millions of cells are computationally very
costly, resulting in a long-duration calibration. While for instance
GPU-accelerated calibration (Blecic, Cecchini, & Trunfio, 2014)
could cope with the increasing demand for computational power,
the underlying methods do not fundamentally change. In addition,
while calibration using machine-learning algorithms can produce
LULC changes that mimic observed transitions, overfitting the
parameters might lead to variable future projections. Thus, the
observed spatial development trends in historical data are discon-
tinued when running many subsequent iterations of the calibrated
LULC change model.

By building upon a Dinamica-EGO-based LULC change model
(Filho, Corradi, Cerqueira, & Araújo, 2003; Filho, Rodrigues, &
Costa, 2009), a 2-stage modeling approach is introduced to sepa-
rate the calculation of the urban-area growth from the diversifica-
tion of the growth extent into urban LULC classes. This method
ensures the production of consistent LULC patterns over long peri-
ods. The model is equipped with a customized automatic calibra-
tion method based on a genetic algorithm (GA). The GA is
extended with a local search function, which significantly reduces
the required number of candidate solutions and iterations to pro-
duce robust and accurate results. This approach provides an alter-
native for the often used ‘off-the-shelf’ machine-learning
algorithms used in LULC change models. To test the outcomes,
the model is initially applied to the Beijing metropolitan area,
which is an ideal case study due to the combination of market-dri-
ven rapid urban expansion and top-down planning policies (Han,
Lai, Dang, Tan, & Wu, 2009). The model is required to adjust to
alternative urban development trends that might not simply

evolve near the current urban clusters. Furthermore, the relatively
large case study area, combined with the applied 30-m spatial res-
olution, could require substantial computations.

In the first section of the paper, the case study and the Dinamica
EGO model are introduced, including a detailed description of the
methods used to define transition rules and the evaluation criteria
used to estimate the goodness-of-fit of the produced LULC changes.
The second part provides the background and context for the
development of the 2-stage approach, as well as the GA extended
calibration. Subsequently, the outcomes are presented. A
comprehensive analysis should provide sufficient evidence for
the robustness of the observations and interpretations. Finally, a
brief discussion of the underlying assumptions and ongoing issues
is presented.

2. The case study

2.1. Beijing

The case study used to test the model is greater Beijing, China.
To an extent, Beijing’s urban development is typical for an Asian
megacity; since the late 1980s, the city has undergone massive
expansion and redevelopment which has doubled the size of the
urban extent in the last 15 years. Over 1995–2005, this expansion
comprised 19% infill, 75% extension and 6% leapfrogging develop-
ment (Fig. 2). Although greater Beijing is surrounded by mountains
to the north and west, the city’s potential for development is rela-
tively unconstrained. However, Beijing’s future growth is not
unlimited; the absence of freshwater bodies (Jiang, 2009) and the
increasing traffic congestion (Zhao, 2010) are likely to limit Bei-
jing’s expansion in the long term. Despite the large degree of free-
dom for development, Beijing remains relatively compact. The
majority of the urban extent is contiguous and expanded from
the 15th century ‘‘Forbidden City’’, which forms the geographic
center of the city. Nevertheless, Beijing is facing significant expan-
sion due to urban sprawl (Zhao, 2010), which has emerged over the
last decade.

In 2005, the Beijing metropolitan area housed approximately
15 million inhabitants (Beijing Statistics Bureau, 2005), which
had been expected to increase to 18 million by 2020. However,
the current population has already surpassed 19.6 million
(National Statistics Bureau, 2011), and the Beijing Academy of
Social Sciences recently revised their estimate to 26 million by
2020 (Caixin Online, 2012). These discrepancies show that there
is no real consensus regarding the population growth in Beijing
and that future containment might be difficult to achieve through
policy and urban growth constraints. In contrast to many other
rapidly developing megacities, the urban development of Beijing
is being facilitated through a succession of regional development
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Fig. 1. Typical setup for a LULC change model, including the feedback mechanism for the calibration.
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