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A proof of concept is presented on how to produce uncertainty-aware near real-time coastal flood inundation
Web maps from water-level observations and predictions, which have been computed for tide gauge sites and
made publicly accessible. The stochastic inundation simulation takes into account several sources of uncertainty,
which have until now not been employed in either bathtub models or hydrodynamic models. The simulation is
based on the Monte Carlo method. The feasibility of the proposed approach is demonstrated by an im-
plementation using general-purpose computing on graphics processing units. The outcome of the research is that

the current technologies enable the building of a novel system that connects to official data sources and that
takes into account sources of uncertainty whose inclusion in the past has been avoided by being either weakly
known or computationally too expensive.

1. Introduction

In the European Union, the Floods Directive (The European
Parliament and the Council of the European Union, 2007b) is put into
effect, which requires the member states to assess the flood risk in their
coastal zones in the form of flood hazard and risk maps. The maps are
static in nature and reflect the likelihood of various risk levels. A flood
hazard map visualizes at least the extent and depth of the flood (Fig. 1),
while a risk map incorporates the number of inhabitants, type of eco-
nomic activities, and other critical objects and infrastructure of the
particular scenario. Still, one of the major deficiencies in flood mapping
is the assumption of error-free data.

At the same time as flood risk assessment has gained attention (de
Moel et al., 2009), the open data movement has gained popularity and
technological advances made it possible to share the data. Conse-
quently, some national agencies measuring and forecasting sea levels
are making their data public; for example, the Finnish Meteorological
Institute (FMI) opened its first digital data sets for the general public in
2013. The data is published via standardized web interfaces and data
schemas. This allows anyone to derive new services and data products
from it.

In this paper, we go beyond state-of-the-art of projected flood ha-
zard maps by presenting a proof of concept on how to produce near
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real-time coastal flood inundation maps that visualize the impact of
uncertainties in a number of input data sources. As the source data for
computation, we use water-level forecasts for tide gauges and a digital
elevation model, both of which are loaded from publicly-accessible web
interfaces. Using a Monte Carlo (MC) -based method, we take into ac-
count several sources of uncertainty, some of which are recognized now
for the first time in the inundation context. Finally, the outcome is
published using open interfaces and an interactive web map.

The organization of the paper is the following. This Section con-
tinues with a short introduction to inundation models and describes
what methods have earlier been used to handle uncertainty. In Section
2, we describe the used model. In Section 3, we describe the data, how
its uncertainty is considered, and the related existing web interfaces. In
Section 4, we present the system architecture and explain the choices
made to speed-up the modelling, like partitioning the data and the use
of graphics processing units for general-purpose computing. In Section
5, we describe our test area and hardware used to validate the feasi-
bility of the concept. Finally, in Section 6, we discuss the limitations
and further potential of the presented system.

1.1. Inundation models

Coastal flood hazard maps are made mainly with hydrodynamic
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Fig. 1. A view of the Flood Map Service of the Finnish Environment Institute.
The water depth is non-linearly colour-coded with shades of blue. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)

models. A technical review on inundation models is given, for example,
by Néelz and Pender (2009) and Di Baldassarre (2012). The models can
be categorized according to their dimension. In case of coastal floods,
computationally cheap 1D models are rarely used. Among other things,
they would have to be applied to beach profiles or form a network of
channels through which the inundation advances inland. On the other
hand, 3D models have a high computational cost. For them to be fea-
sible, a compromise needs to be made between the cell size, domain size
and complexity of the closure scheme (Woodhead et al., 2007). Less
accurate 2D models are more practical in producing water levels and
flow velocities that vary in the horizontal directions. However, even 2D
models with a reasonable resolution may be impractical from the run-
time viewpoint to be applied over extensive areas or in iterative ana-
lyses that do not apply parallel computing techniques (Néelz and
Pender, 2010).

Besides the aforementioned categories, inundation may be de-
termined by hybrid models and a branch of techniques that is unbound
by fluid hydraulics. The latter include bathtub methods, which are also
referred to as flat water, single-value surface and equilibrium methods.
They compare a projected water-level surface with the terrain's eleva-
tion. Inundation occurs when the water level exceeds the terrain's ele-
vation. In tandem, the elevation difference can be captured in a flood
depth map. The water level may be based on a given return period or
sea level rise scenario (Coveney and Fotheringham, 2011; Gesch, 2009;
Poulter and Halpin, 2008), but it may be as well interpolated from tide
gauge data or a 1D flood model applied to cross sections perpendicular
to a river's flow (Werner, 2001).

The feasibility of bathtub models has been demonstrated by Bates
and De Roo (2000), who fitted a water-level surface to recorded tide
gauge levels. The model was placed side by side with the solutions of
two 2D models. The comparison was based on river flood extents,
which were interpreted from aerial and SAR imagery. Bates and De Roo
came to the conclusion that, at least in their study, even if the 2D in-
undation models outperformed the bathtub model, the latter performed
well.

1.2. Uncertainty-aware modelling

Coastal floods are invariably uncertain as a consequence of the
uncertainties related to the projections of the climate, the complex
nature of coastal processes, and DEMs (Cowell and Zeng, 2003). This
also applies to bathtub models, where the errors of input data together
with all uncertainties in the model, in general, propagate to the in-
undation maps. While deterministic models draw a crisp extent
boundary, probabilistic models define the extent as a function of
probability or for certain confidence levels. In the probabilistic models,
methods range from the use of Artificial Neural Networks (Shrestha
et al., 2009) to the use of fuzzy sets where membership vectors define
the possibility of an element being inundated (Pappenberger et al.,
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2007). However, parameter uncertainty has been mostly quantified
with an informally Bayesian method - the Generalized Likelihood Un-
certainty Estimation (GLUE) (Beven and Binley, 2014). A likely reason
for GLUE's success is its conceptual simplicity and applicability to
nonlinear systems (Stedinger et al., 2008) but as embarrassingly par-
allel it also suits distributed systems (Vrugt et al., 2009).

Relating to stochastic bathtub models, Gesch (2009) adds to the
DEM a coefficient called linear error at the 95% confidence level, which
describes the vertical accuracy of the DEM. The coefficient is defined by
1.96 X root-mean-square error (RMSE), as the data is assumed to be
normally distributed and unbiased. A successor of the model, published
by Schmid et al. (2014), also takes into account the geographically
varying uncertainty to convert the water levels to a geodetic height
system, which in their model can be assessed to be within 5-23 cm
(NOAA, 2015). Unlike the other bathtub models, the approach pre-
sented by Zerger et al. (2002) creates, in Monte Carlo-style, perturbed
instances of a DEM. The random noise of the model is based on the
RMSE of the data used to compute the DEM.

2. The stochastic bathtub model

In our stochastic bathtub model, we take into account the un-
certainties of DEM and tide gauge predictions. The stochastic model is
implemented in the MC methods fashion where every iteration pro-
duces equally probable instances of terrain (Fig. 2) and water-level
(Fig. 3). At the end of each MC run, a cell-wise comparison is made
between the two (Fig. 4). The final probability after n runs is computed
with the following equation

1 n 1 ifx>0
P=—-3 (gn(W =D)+ 1), sgn(x)=1-1 ifx<0
i3 0 ifx=0 (@))]

where W, and D; correspond to water surface and terrain elevation in-
stances, respectively. In the process of computing the inundation based
on observations, in order to correct earlier forecasts, we only consider
the uncertainty of the terrain elevation.

In the end, we enforce hydrological connectivity by removing in-
undated cells not connected to the sea directly or via other cells. We
apply eight-connectivity, as was done in earlier bathtub models (Gesch,
2009; Poulter and Halpin, 2008). This raises the significance of topo-
graphic features, like embankments, and helps to avoid erroneous
conclusions. Once connectivity to the sea exists, the surface will still
contain those rivers, lakes, and reservoirs that have been valid path-
ways for the flood to proceed inland. We remove them by masking in a
manner similar to that of Rowley et al. (2007) and Gesch (2009).

2.1. Terrain elevation instance

According to the First Law of Geography (Tobler, 1970) geo-
graphically proximal objects tend to have correlated values of an at-
tribute. This phenomenon, termed ”spatial autocorrelation”, also ap-
plies to the errors related to the values. In their study, Zerger et al.
(2002) used a spatially autoregressive process presented by Hunter and
Goodchild (1997) to estimate the spatial autocorrelation of the DEM. In
this study, however, we use a technique known as process convolution
(Higdon, 1998; Thiébaux and Pedder, 1987) to model the spatial de-
pendence between DEM errors (Oksanen and Sarjakoski, 2005) because
in our case the correlogram model is known and the technique is
computationally fast with small convolution kernels. We use the cor-
relogram p(h), computed from the practical range r,, to create an iso-
tropic smoothing kernel K (h) with radius rieme

p(h) = e a 2
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