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A B S T R A C T

This paper introduces a fast algorithm for simultaneous inversion and determinant computation of small sized
matrices in the context of fully Polarimetric Synthetic Aperture Radar (PolSAR) image processing and analysis.
The proposed fast algorithm is based on the computation of the adjoint matrix and the symmetry of the input
matrix. The algorithm is implemented in a general purpose graphical processing unit (GPGPU) and compared to
the usual approach based on Cholesky factorization. The assessment with simulated observations and data from
an actual PolSAR sensor show a speedup factor of about two when compared to the usual Cholesky factorization.
Moreover, the expressions provided here can be implemented in any platform.

1. Introduction

Microwave remote sensing is basilar as it provides complementary
information to that provided by classical sensors which perceive the
optical spectrum. Longer wavelengths in the 1 cm to the 1m can pe-
netrate clouds and other adverse atmospheric conditions, as well as
canopies and soils. There are passive and active microwave sensors; the
latter carry their own source of illumination, and can be either imaging
or non-imaging. Radar devices belong to the former. They transmit a
radio signal and detect the returned echo (backscatter), with which an
image is formed. Several signal processing techniques are used to en-
hance the spatial resolution of such imagery. In particular, the use of
synthetic antennas leads to synthetic aperture radar (SAR) imaging; as
well as to polarimetric SAR (PolSAR) imaging which employs polarized
signals.

The statistical properties of PolSAR were studied in the context of
optical polarimetry (Goodman, 1985). The simplest case occurs when
the backscatter is constant. In such a case, the targets are characterized

by a scattering (or Sinclair) matrix S, which describes dependence of its
scattering properties on the polarization. The scattering matrix is de-
fined on the horizontal (H) and vertical (V) basis as
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where each element is a complex value, representing the amplitude and
the phase of the scattered signal. Reciprocity =S SHV VH holds for most
natural targets, so one may use the scattering vector

= ⊤S S SS [ ]HH HV VV without loss of information, where ⊤ represents
transposition (Anfinsen et al., 2011).

More often than not, these single-look complex data are processed in
order to improve the signal-to-noise ratio. Multilook fully polarimetric
data are formed as
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where H denotes the conjugate transposition and ℓ indexes theoretically
independent looks of the same scene. This ×3 3 complex matrix is
positive Hermitian with real entries in the diagonal.

As noted by Torres et al. (2014) and the references therein, many
techniques for PolSAR image processing and analysis rely on the sta-
tistical properties of Z N( ). The density of several models (Wishart
(Goodman, 1963), K (Yueh et al., 1990), G0 (Frery et al., 1997), G
(Freitas et al., 2005), Kummer-U (Doulgeris, 2015) to name a few)
depends solely on a few parameters: the covariance matrix, the number
of looks L and, sometimes, texture descriptors. The covariance matrix is
the expected value of Z N( ), namely = ZZ E{ }N( ) , and it enters the ex-
pressions only through its determinant and its inverse.

Moreover, divergences among these models (Kullback-Leibler,
Hellinger, Rényi, Bhattacharya, Triangular, Harmonic (Nascimento
et al., 2010)), test statistics (likelihood ratio) (Conradsen et al., 2003),
and classification rules (Skriver) only require the computation of Zdet( ),

−Z 1, and −Zdet( )1 . A typical Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR) image may have × ⋅10 4 104 4 pixels, where
each pixel is represented by a ×3 3 Hermitian matrix as in (2). As il-
lustrative example, if one relies on Nonlocal Means Filter approach
based on stochastic distances (Torres et al., 2014), at each sear window,
which are typically large, e.g. ×23 23 pixels, one needs to compute 232

inverse and 232 determinant operations for each pixel. This scales to a
long computing time as it results in a total of ⋅ ⋅ ≈ ⋅23 4 10 2.1 102 8 11 inverse
matrix and determinant calculations per image. Such amount of data is
likely to increase with the incoming availability of sensors with finer
resolution. Thus one reaches the conclusion that accurate and fast
procedures are of paramount importance for dealing with PolSAR data.

The Cholesky factorization is the most popular numerical analysis
method for the direct solution of linear algebra tasks involving positive
definite dense matrices (Björck, 2014; Golub and Van Loan, 1996;
Shores, 2007). It is also the algorithm of choice for matrix inversion and
determinant calculation in the context of image classification of PolSAR
images (Torres et al., 2014). In this paper, we propose a fast algorithm
for the computation of matrix inverse and determinant of ×3 3 Her-
mitian matrices in the context of PolSAR image classification that
outperforms the Cholesky factorization. The introduced algorithm is
proven to reduce the overall arithmetic complexity associated with the
matrix inversion and determinant calculation when compared with the
Cholesky factorization approach. Such lower arithmetic cost results in a
reduction of the computation time to about a half of the Cholesky based
method. The proposed algorithm and the matrix inversion and de-
terminant calculation based on Cholesky factorization are implemented
in a general purpose graphical processing unit (GPGPU) using C/C++
and open computing language (OpenCL), which are tools that have
been used for accelerating a several of algorithms in geoscience and
remote sensing (Lukač and Žalik, 2013; Steinbach and Hemmerling,
2012; Li et al., 2014, 2015). The proposed algorithm and the method
based on Cholesky factorization are tested using both simulated and
measured PolSAR data (The Polarimetric SAR Data Processing and
Educational Tool, 2017).

The paper unfolds as follows. Section 2 introduces notation and
preliminary considerations. The Cholesky factorization is reviewed and
described as a means for matrix inversion and determinant computa-
tion. In Section 3, the proposed method and its fast algorithm is in-
troduced. Section 3 brings the arithmetic complexity assessment and a
discussion on the numerical error analysis of the proposed method
compared with the Cholesky factorization approach. Section 4 has
implementation considerations including software and hardware com-
ments. Experiment results shows the effectiveness of the proposed
method. Final comments and suggested directions for future works are
in Section 5.

2. Mathematical review

2.1. Preliminaries and notation

The type of matrix that occurs in the PolSAR problem is the ×3 3
correlation matrix with complex entries. Being a correlation matrix, it
inherits the Hermitian property (Golub and Van Loan, 1996). There-
fore, it can be represented according to:
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where a, d, and f are real quantities; b, c, and e are complex numbers;
and the overbar bar denotes the complex conjugation. Because A is
Hermitian, in actual implementations, only the upper or lower trian-
gular part of the matrix is stored for computation.

The i j( , ) cofactor of the matrix A is the determinant of the sub-
matrix formed with the elimination of the ith row and jth column times
− +( 1)i j (Golub and Van Loan, 1996). The adjoint matrix is computed
according to the following (Golub and Van Loan, 1996):
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where the element in position i j( , ) represents the cofactor of the ele-
ment j i( , ) in the original matrix A and are given by
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The adjoint matrix ∼A is also Hermitian; thus a d, ,c c and fc are real
numbers.

2.2. Cholesky factorization

Cholesky factorization is applied in many numerical problems
(Aquilante et al., 2008; Wilson, 1990; Kershaw, 1978). Let A be the
input matrix we are interested into inverting and computing the de-
terminant. Cholesky factorization decomposes an input matrix into the
product ⋅L LH, where L is a lower triangular matrix and H represents the
transpose conjugate operation. Let li j, be the i j( , ) entry of L. The
Cholesky factorization is based on the following relations between the
elements of A and L:
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where ⋅ returns the magnitude of its complex argument (Graham et al.,
1989).

Once matrix L is derived, its inverse can be directly obtained from
the following expressions:
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